Soạn giáo án điện tử Toán 8 CD Chương 5 Bài 1: Định lí Pythagore
Giáo án powerpoint Toán 8 cánh diều mới. Giáo án soạn theo tiêu chí hiện đại, đẹp mắt với nhiều hình ảnh, nội dung, hoạt động phong phú, sáng tạo. Giáo án điện tử này dùng để giảng dạy online hoặc trình chiếu. Tin rằng, bộ bài giảng này sẽ hỗ trợ tốt việc giảng dạy và đem đến sự hài lòng với thầy cô.
Click vào ảnh dưới đây để xem giáo án rõ












THÂN MẾN CHÀO CÁC EM HỌC SINH ĐẾN VỚI BÀI HỌC MỚI
KHỞI ĐỘNG
Quan sát Hình 1, bạn Đan khẳng định rằng: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.
Bạn Đan dựa vào kiến thức nào để đưa ra khẳng định trên?
CHƯƠNG V: ĐỊNH LÍ PYTHAGORE. TỨ GIÁC
BÀI 1:
ĐỊNH LÍ PYTHAGORE
NỘI DUNG BÀI HỌC
Định lí Pythagore
Định lí Pythagore đảo
- ĐỊNH LÍ PYTHAGORE
Thảo luận nhóm đôi, hoàn thành HĐ1.
HĐ 1.
Thực hiện các hoạt động sau:
- a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2).
- b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt 4 hình tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bị che đi là hình vuông MNPQ với độ dài cạnh là a (Hình 4).
- c) Gọi S1là diện tích của hình vuông ABCD. Gọi S2là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2
- d) Dựa vào kết quả ở câu c, dự đoán mối liên hệ giữa a2và b2 + c2.
Giải
- c) là: (đơn vị diện tích).
là: (đơn vị diện tích).
là: (đơn vị diện tích).
Tổng diện tích của 4 tam giác vuông là:
(đơn vị diện tích).
- d) bằng tổng diện tích của hình vuông và diện tích của 4 tam giác vuông hay .
Do đó:
Hay
KẾT LUẬN
Ta có định lí Pythagore sau:
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
Với tam giác vuông tại ta có:
hay ( với
).
Ví dụ 1: SGK – tr.95
Cho tam giác ABC vuông tại A có AB = 5 cm và AC = 12 cm. Tính độ dài cạnh BC.
Giải
Do tam giác ABC vuông tại A nên theo định lí Pythagore, ta có:
Suy ra
Do đó (cm)
Luyện tập 1
Tính độ dài đường chéo của hình vuông có độ dài cạnh là
Giải
Ta có hình vuông độ dài các cạnh là . Đường chéo
Áp dụng định lí Pythagore cho vuông tại , có:
- ĐỊNH LÍ PYTHAGORE ĐẢO
HĐ 2.
Thực hiện các hoạt động sau
- a) Vẽ một tam giác ABC có AB = 3 cm, AC = 4 cm và BC = 5 cm;
- b) Tính và so sánh diện tích của hình vuông có cạnh BC với tổng diện tích của hai hình vuông tương ứng có cạnh AB và AC (Hình 6);
- c) Kiểm tra xem góc A của tam giác ABC có phải là góc vuông hay không.
Giải
a)
- b) Diện tích của hình vuông có cạnh là:
Diện tích của hình vuông có cạnh là:
Tổng diện tích của hai hình vuông trên là:
Diện tích của hình vuông có cạnh là:
Vậy diện tích của hình vuông có cạnh bằng tổng diện tích của hai hình vuông tương ứng có cạnh và .
- c) Dùng thước êke (hoặc thước đo góc) ta xác định được của là góc vuông.
KẾT LUẬN
Ta có định lí Pythagore đảo sau:
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.
Với tam giác , nếu
hay ( với
) thì tam giác ABC vuông tại A
Ví dụ 2: SGK – tr.96
Cho tam giác DEG có DE = 7 cm, DG = 24 cm và EG = 25 cm. Tam giác DEG có phải là tam giác vuông hay không?
Giải
Xét tam giác DEG, ta có: ()
Và ()
Suy ra
Do đó tam giác DEG vuông tại D (theo định lí Pythagore đảo)
Thực hành 2
Tam giác có ba cạnh 20 cm, 21 cm, 29 cm có phải là tam giác vuông hay không?
Giải
Ta có: ()
Và ()
Suy ra
Tam giác có ba cạnh 20 cm, 21 cm, 29 cm là tam giác vuông (theo định lí Pythagore đảo)
Ví dụ 3: SGK – tr.96
Hình 8 mô tả một cánh buồm có dạng tam giác vuông, được buộc vào cột buồm thẳng đứng, với độ dài hai cạnh góc vuông là 12 m và 5 m. Tính chu vi và diện tích của cánh buồm đó
Giải
Gọi (m) là độ dài cạnh huyền của cánh buồm ()
Theo định lí Pythagore, ta có:
Suy ra (m)
Chu vi của cánh buồm đó là: 12 + 5 + 13 = 30 (m)
Diện tích của cánh buồm đó là: ()
LUYỆN TẬP
--------------- Còn tiếp ---------------
Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác
Xem thêm giáo án khác
GIÁO ÁN TỰ NHIÊN 8 CÁNH DIỀU
Giáo án Toán 8 cánh diều
Giáo án điện tử toán 8 cánh diều
Giáo án KHTN 8 cánh diều
Giáo án điện tử KHTN 8 cánh diều
Giáo án Công nghệ 8 cánh diều
Giáo án điện tử công nghệ 8 cánh diều
Giáo án Tin học 8 cánh diều
Giáo án điện tử Tin học 8 cánh diều
GIÁO ÁN XÃ HỘI 8 CÁNH DIỀU
Giáo án Ngữ văn 8 cánh diều
Giáo án điện tử ngữ văn 8 cánh diều
Giáo án Lịch sử và địa lí 8 cánh diều
Giáo án điện tử lịch sử và địa lí 8 cánh diều
Giáo án Công dân 8 cánh diều
Giáo án điện tử công dân 8 cánh diều