Giải câu 9 bài 3: Các hệ thức lượng trong tam giác và giải tam giác

Câu 9: Trang 59 - sgk hình học 10

Cho hình bình hành ABCD có AB = a, BC = b, BD = m, AC = n.

Chứng minh rằng: $m^{2} + n^{2} = 2(a^{2} + b^{2})$.


Hướng dẫn giải câu 9 bài Các hệ thức lượng trong tam giác và giải tam giác

Gọi O là giao điểm của AC và BD.

Khi đó O là trung điểm của AC và BD, đồng thời BO là trung tuyến của ΔABC.

=> $BO^{2}=\frac{2(AB^{2}+BC^{2})-AC^{2}}{4}=\frac{2(a^{2}+b^{2})n^{2}}{n}$

Mặt khác : $BO=\frac{1}{2}BD<=>BO^{2}=\frac{1}{4}BD^{2}=\frac{m^{2}}{4}$

=> $\frac{m^{2}}{4}=\frac{2(a^{2}+b^{2})n^{2}}{n}$

<=> $m^{2} + n^{2} = 2(a^{2} + b^{2})$ (đpcm)


Trắc nghiệm hình học 10 bài 3: Các hệ thức lượng trong tam giác và giải tam giác( P2)
Từ khóa tìm kiếm Google: Lời giải câu 9 bài Các hệ thức lượng trong tam giác và giải tam giác, Cách giải câu 9 bài Các hệ thức lượng trong tam giác và giải tam giác, hướng dẫn giải câu 9 bài Các hệ thức lượng trong tam giác và giải tam giác, Gợi ý giải câu 9 bài Các hệ thức lượng trong tam giác và giải tam giác- Hình học 10

Bình luận

Giải bài tập những môn khác