Giải Bài 2: Phương trình đường tròn sgk Hình học 10 Trang 81
Bài học giới thiệu nội dung: Phương trình đường tròn. Một kiến thức quan trọng trong chương về phương pháp tọa độ trong mặt phẳng. Dựa vào cấu trúc SGK hình học lớp 10, Tech12h sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn.
A. TÓM TẮT LÝ THUYẾT
1. Phương trình đường tròn có tâm và bán kính cho trước
Phương trình đường tròn có tâm \(I(a; b)\,\ \) bán kính \(R\) là:
${(x - a)^2} + {(y - b)^2} = {R^2}$
2. Nhận xét
Phương trình đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\) có thể được viết dưới dạng:
$${x^2} + {y^2} - 2ax - 2by + c = 0$$
trong đó \(c = {a^2} + {b^2} + {R^2}\)
Ngược lại, phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của đường tròn \((C)\) khi và chỉ khi \({a^2} + {b^2}-c>0\). Khi đó đường tròn \((C)\) có tâm \(I(a; b)\) và bán kính \(R = \sqrt{a^{2}+b^{2} - c}\)
3. Phương trình tiếp tuyến của đường tròn
Cho điểm \({M_0}({x_0};{y_0})\) nằm trên đường tròn \((C)\) tâm \(I(a; b)\). Gọi \(∆\) là tiếp tuyến với \((C)\) tại \(M_0\).
Ta có \(M_0\) thuộc \(∆\) và vectơ \(\vec{IM_{0}}=({x_0} - a;{y_0} - b)\) là vectơ pháp tuyến cuả \( ∆\).
Do đó \(∆\) có phương trình là : $({x_0} - a)(x - {x_0}) + ({y_0} - b)(y - {y_0}) = 0\,\ (1)$
Phương trình (1) là phương trình tiếp tuyến của đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\) tại điểm \(M_0\) nằm trên đường tròn.
Bình luận