Giải Bài: Ôn tập cuối năm sgk Hình học 10 Trang 98

Để củng cố về toàn bộ kiến thức chương trình hình học lớp 10, Tech12h xin chia sẻ với các bạn bài: Ôn tập cuối năm thuộc phần hình học lớp 10. Với kiến thức cần nhớ và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu hữu ích giúp các bạn học tập tốt hơn.

Giải Bài: Ôn tập cuối năm sgk Hình học 10 Trang 98

A. TÓM TẮT KIẾN THỨC

I. VECTO

Chi tiết

II. TÍCH VÔ HƯỚNG CỦA HAI VECTO VÀ ỨNG DỤNG

Chi tiết

III. PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Chi tiết

B. Bài tập và hướng dẫn giải

Câu 1: Trang 98 - SGK Hình học 10

Cho hai vecto \(a\) và \(b\) sao cho \(|\overrightarrow a | = 3;|\overrightarrow b | = 5;(\overrightarrow a ,\overrightarrow b ) = {120^0}\) . Với giá trị nào của m thì hai vecto \(\overrightarrow a  + m\overrightarrow b \) và \(\overrightarrow a  - m\overrightarrow b \) vuông góc với nhau?

Câu 2: Trang 98 - SGK Hình học 10

Cho tam giác \(ABC\) có hai điểm \(M,N\) sao cho: \(\left\{ \matrix{\overrightarrow {AM} = \alpha \overrightarrow {AB} \hfill \cr \overrightarrow {AN} = \beta \overrightarrow {AC} \hfill \cr} \right.\)

a) Hãy vẽ \(M, N\) khi \(\alpha  = {2 \over 3};\beta  =  - {2 \over 3}\).

b)  Hãy tìm mối liên hệ giữa \(α, β\) để \(MN//BC\).

Câu 3: Trang 99 - SGK Hình học 10

Cho tam giác đều \(ABC\) cạnh \(a\)

a) Cho \(M\) là một điểm trên đường tròn ngoại tiếp tam giác \(ABC\). Tính \(MA^2+ MB^2+ MC^2\) theo \(a\);

b) Cho đường thẳng \(a\) tùy ý, tìm điểm \(N\) trên đường thẳng \(d\) sao cho \(NA^2+ NB^2 + NC^2\) nhỏ nhất.

Câu 4: Trang 99 - SGK Hình học 10

Cho tam giác \(ABC\) đều có cạnh bằng \(6cm\). Một điểm \(M\) nằm trên cạnh \(BC\) sao cho \(BM  = 2cm\)

a) Tính độ dài của đoạn thẳng \(AM\) và tính cosin của góc \(BAM\)

b) Tính bán kính đường tròn ngoại tiếp tam giác \(ABC\)

c) Tính độ dài đường trung tuyến vẽ từ \(C\) của tam giác \(ACM\)

d) Tính diện tích tam giác \(ABM\)

Câu 5: Trang 99 - SGK Hình học 10

Chứng minh rẳng trong mọi tam giác ABC ta đều có:

a) \(a = b \cos C + c \cos B\)

b) \(\sin A = \sin B.\sin C + \sin C.\cos B\)

c) \(h_a= 2R.\sin B\sin C\)

Câu 6: Trang 99 - SGK Hình học 10

Cho các điểm \(A(2; 3); B(9; 4); M(5; y); P(x; 2)\)

a) Tìm \(y\) để tam giác \(AMB\) vuông tại \(M\)

b) Tìm \(x\) để ba điểm \(A, P\) và \(B \)thẳng hàng

Câu 7: Trang 99 - SGK Hình học 10

Cho tam giác \(ABC\) với \(H\) là trực tâm. Biết phương trình của đường thẳng \(AB, BH\) và \(AH\) lần lượt là: \(4x + y – 12 = 0, 5x – 4y – 15 = 0\) và \(2x + 2y – 9 = 0\)

Hãy viết phương trình hai đường thẳng chứa hai cạnh còn lại và đường cao thứ ba.

Câu 8: Trang 99 - SGK Hình học 10

Lập phương trình đường tròn có tâm nằm trên đường thẳng \(Δ :4x + 3y – 2 = 0\) và tiếp xúc với hai đường thẳng \(d_1: x + y – 4 = 0\) và \(d_2: 7x – y + 4 = 0\)

Câu 9: Trang 99 - SGK Hình học 10

Cho elip \((E)\) có phương trình: \({{{x^2}} \over {100}} + {{{y^2}} \over {36}} = 1\)

a) Hãy xác định tọa độ các đỉnh, các tiêu điểm của elip \((E)\) và vẽ elip đó

b) Qua  tiêu điểm của elip dựng đường thẳng song song với \(Oy\) và cắt elip tại hai điểm \(M\) và \(N\). Tính độ dài đoạn thẳng \(MN\).

Nội dung quan tâm khác

Bình luận

Giải bài tập những môn khác