Giải bài 4.7 bài tổng và hiệu của hai vectơ

Bài tập 4.7. Cho hình bình hành ABCD. Hãy tìm điểm M để $\overrightarrow{BM}=\overrightarrow{AB}+\overrightarrow{AD}$. Tìm mối quan hệ giữa hai vecto $\overrightarrow{CD}$ và $\overrightarrow{CM}$.  


Giải bài 4.7 bài tổng và hiệu của hai vectơ

$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$ (quy tắc hình bình hành)

Suy ra điểm M phải thỏa mãn $\overrightarrow{AC} = \overrightarrow{BM}$, hay ABMC là hình bình hành.

Ta có: ABMC là hình bình hành nên $\overrightarrow{AB} = \overrightarrow{CM}$

mà: $\overrightarrow{AB} = -\overrightarrow{CD}$ (hình bình hành ABCD)

Nên $\overrightarrow{CD} = -\overrightarrow{CM}$


Trắc nghiệm Toán 10 kết nối bài 8 Tổng và hiệu của hai vectơ

Bình luận

Giải bài tập những môn khác