Soạn giáo án điện tử toán 10 kết nối bài 25: Nhị thức newton
Giáo án powerpoint toán 10 kết nối tri thức mới bài bài 25: Nhị thức newton. Giáo án soạn theo tiêu chí hiện đại, đẹp mắt với nhiều hình ảnh, nội dung, hoạt động phong phú, sáng tạo. Giáo án điện tử này dùng để giảng dạy online hoặc trình chiếu. Tin rằng, bộ bài giảng này sẽ hỗ trợ tốt việc giảng dạy và đem đến sự hài lòng với thầy cô.
Còn nữa....Giáo án khi tải về là bản đầy đủ. Có full siles bài giảng!
Nội dung giáo án
CHÀO MỪNG CÁC EM ĐẾN VỚI TIẾT HỌC MỚI!
KHỞI ĐỘNG
Cho các khai triển
Quan sát các đơn thức ở vế phải của các đẳng thức trên, hãy nhận xét về quy luật số mũ của a và b. Có thể tìm được cách tính các hệ số của đơn thức trong khai triển khi không?
BÀI 25:
NHỊ THỨC NEWTON
NỘI DUNG BÀI HỌC
Khai triển lũy thừa của nhị thức bằng sơ đồ cây
Vận dụng công thức nhị thức
Thảo luận nhóm: hãy đọc nội dung HĐ1 và trả lời câu hỏi.
Sơ đồ hình cây của tích hai nhị thức (a + b).(c + d) được xây dựng như sau:
- Từ một điểm gốc, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức (gọi là nhãn của mũi tên) của nhị thức thứ nhất (H.8.6);
- Từ ngọn của mỗi mũi tên đã xây dựng, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức của nhị thức thứ hai;
- Tại ngọn của các mũi tên xây dựng tại bước sau cùng, ghi lại tích của các nhãn của các mũi tên đi từ điểm gốc đến đầu mút đó.
Giải:
Tổng các tích nhận được:
a.c + a.d + b.c + c.d
Khai triển của tích
(a+b).(c+d) = a.c + a.d + b.c + c.d
Vậy tổng của các tích nhận được bằng với khai triển của tích (a+b).(c+d).
Hãy cho biết các đơn thức còn thiếu (...) trong sơ đồ hình cây (H.8.7) của tích (a + b) . (a + b) . (a + b).
Có bao nhiêu tích nhận được lần lượt bằng ?
Hãy so sánh chúng với các hệ số nhận được khi khai triển
Giải:
1 đơn thức bằng a3,
3 đơn thức bằng a2b,
3 đơn thức bằng ab2,
1 đơn thức bằng b3
Các hệ số nhận được 1, 3, 3, 1 trùng với các hệ số tương ứng của a3, a2b, ab2, b3.
Nhận xét:
Các tích nhận được từ sơ đồ hình cây của tích các đa thức giống như cách lấy ra một đơn thức từ mỗi đa thức rồi nhân lại với nhau. Hơn nữa, tổng của chúng cho ta khai triển của tích các đa thức đã cho.
HĐ3
Sơ đồ hình cây của khai triển được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm (theo quy tắc nhân) đơn thức có dạng x . y . z . t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a . a . b . a, thu gọn là . Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với trong tổng là .
Giải:
Để có đơn thức thì phải có 0 nhân tử b, khi đó số đơn thức đồng dạng là: =1, hay có 1 đơn thức
Để có đơn thức thì phải có 3 nhân tử a, 1 nhân tử b, khi đó số đơn thức đồng dạng là: =4.
Để có đơn thức thì có 2 nhân tử a, 2 nhân tử b, khi đó số đơn thức đồng dạng là: = 6
Để có đơn thức thì có 1 nhân tử a, 3 nhân tử b, khi đó số đơn thức đồng dạng là: = 4.
Để có đơn thức thì phải có 4 nhân tử b và không có nhân tử a, khi đó số đơn thức đồng dạng là: =1, hay có 1 đơn thức
Giáo án powerpoint toán 10 kết nối tri thức mới bài bài 25: Nhị thức newton. Giáo án soạn theo tiêu chí hiện đại, đẹp mắt với nhiều hình ảnh, nội dung, hoạt động phong phú, sáng tạo. Giáo án điện tử này dùng để giảng dạy online hoặc trình chiếu. Tin rằng, bộ bài giảng này sẽ hỗ trợ tốt việc giảng dạy và đem đến sự hài lòng với thầy cô.
Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác