Giải luyện tập 4 trang 71 Toán 8 tập 2 KNTT
Luyện tập 4 trang 71 Toán 8 tập 2 KNTT. Thống kê điểm kiểm tra cuối năm môn Toán của một nhóm 100 học sinh lớp 8 được chọn ngẫu nhiên tại ba lớp của trường Trung học cơ sở X, thu được kết quả như bảng sau:
Điểm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số hs | 7 | 9 | 11 | 11 | 12 | 12 | 13 | 9 | 8 | 8 |
a) Chọn ngẫu nhiên một học sinh của trường X. Hãy tính xác suất thực nghiệm của các biến cố sau:
A: "Học sinh đó có điểm nhỏ hơn hoặc bằng 5"
B: "Học sinh đó có điểm từ 4 đến 9"
b) Hãy dự đoán trong nhóm 80 học sinh lớp 8 chọn ngẫu nhiên từ ba lớp khác của trường X:
Có bao nhiêu học sinh có số điểm không vượt quá 5 điểm?
Có bao nhiêu học sinh có số điểm từ 4 đến 9 điểm?
a) Có 7 học sinh có điểm 1, 9 học sinh có điểm 2, 11 học sinh có điểm 3, 11 học sinh có điểm 4, 12 học sinh có điểm 5 => Có 50 học sinh có điểm nhỏ hơn hoặc bằng 5
Xác suất thực nghiệm của biến cố A là: $\frac{50}{100}=0,5$
Có 11 học sinh có điểm 4, 12 học sinh có điểm 5, 12 học sinh điểm 6, 13 học sinh điểm 7, 9 học sinh điểm 8, 8 học sinh điểm 9 => Có 65 học sinh có điểm từ 4 đến 9
Xác suất thực nghiệm của biến cố B là: $\frac{65}{100}=0,65$
b) Gọi k là số học sinh có số điểm không vượt quá 5
Có $P(A)≈\frac{k}{80}$. Thay giá trị ước lượng của $P(A)$ ở trên, ta được
$\frac{k}{80}≈0,5$ => $k≈40$
Vậy có khoảng 40 học sinh có số điểm không vượt quá 5
Gọi h là số học sinh có số điểm từ 4 đến 9 điểm
Có $P(B)≈\frac{h}{80}$. Thay giá trị ước lượng của $P(B)$ ở trên, ta được
$\frac{h}{80}≈0,65$ => $h≈52$
Vậy có khoảng 52 học sinh có số điểm từ 4 đến 9 điểm
Bình luận