Giải câu 7 bài: Ôn tập chương 4

Câu 7:Trang 143-sgk giải tích 12

Chứng tỏ rằng với mọi số thực z, ta luôn có phần thực và phần ảo của nó không vượt quá mô đun của nó.


Giả sử $z = a + bi$

=> $|z|=\sqrt{a^{2}+b^{2}}$

=> $|z|=\sqrt{a^{2}}=|a| \geq a$

     $|z|=\sqrt{b^{2}}=|b| \geq b$

Vậy với mọi số phức thì phần thực và phần ảo của nó không vượt quá mô đun của nó.


Câu hỏi và bài tập trắc nghiệm toán 12 bài Ôn tập chương 4 - số phức
Từ khóa tìm kiếm Google: Lời giải câu 7 bài Ôn tập chương 4, Cách giải câu 7 bài Ôn tập chương 4, hướng dẫn giải câu 7 bài Ôn tập chương 4, Gợi ý giải câu 7 bài Ôn tập chương 4- giải tích 12

Bình luận

Giải bài tập những môn khác