Giải câu 5 bài: Ôn tập chương III

Câu 5: Trang 92 - sgk hình học 12

Cho mặt cầu(S) có phương trình $(x-3)^{2}+(y+2)^{2}+(z-1)^{2}=100$ và mặt phẳng ($\alpha$) có phương trình $2x – 2y – z + 9 = 0$. Mp($\alpha$) cắt mặt cầu (S) theo một đường tròn (C). Hãy xác định tọa độ tâm và tính bán kính của đường tròn (C).


Tâm mặt cầu S: $I(3;-2;1)$

Bán kính $R=10$

Gọi H là tâm đường tròn (C) .

=> Phương trình tham số đường thẳng IH là: $\left\{\begin{matrix}x=3+2t &  & \\  y=-2-2t&  & \\ z=1-t&  & \end{matrix}\right.$

Thay giá trị x, y, z vào pt ($\alpha$), ta được: $t=-2$

=> $H(-1;2;3)$

=> Bán kính đường tròn là: $r=\sqrt{R^{2}-IH^{2}}=\sqrt{10^{2}-6^{2}}=8$


Trắc nghiệm hình học 12 bài: Ôn tập chương III - phương pháp tọa độ trong không gian
Từ khóa tìm kiếm Google: Lời giải câu 5 bài Ôn tập chương III, Cách giải câu 5 bài Ôn tập chương III, hướng dẫn giải câu 5 bài Ôn tập chương III, Gợi ý giải câu 5 bài Ôn tập chương III - hình học 12

Bình luận

Giải bài tập những môn khác