Giải câu 5 bài: Phương trình bậc hai với hệ số thực

Câu 5:Trang 140-sgk giải tích 12

Cho $z = a + bi$ là một số phức. Hãy tìm một phương trình bậc hai với hệ số thực nhận $z$ và $\overline{z}$ làm nghiệm.


Theo bài ra: $z=a+bi$ => $\overline{z}=a-bi$

=> $z+\overline{z}=2a$

     $z.\overline{z}=a^{2}+b^{2}$

=> $z$ và $\overline{z}$ là nghiệm phương trình: $(x-z)(x-\overline{z})=0$

<=> $x^{2}-(z-\overline{z})x+z.\overline{z}=0$

<=> $x^{2}-2ax+a^{2}+b^{2}=0$

Vậy phương trình bậc hai cần tìm là: $x^{2}-2ax+a^{2}+b^{2}=0$


Câu hỏi và bài tập trắc nghiệm toán 12 bài 4: Phương trình bậc hai với hệ số thực
Từ khóa tìm kiếm Google: Lời giải câu 5 bài Phương trình bậc hai với hệ số thực, Cách giải câu 5 bài Phương trình bậc hai với hệ số thực, hướng dẫn giải câu 5 bài Phương trình bậc hai với hệ số thực, Gợi ý giải câu 5 bài Phương trình bậc hai với hệ số thực - giải tích 12

Bình luận

Giải bài tập những môn khác