Giải câu 4 bài nhị thức Newton
Bài tập 4. Chứng minh rằng: $C_{5}^{0}-C_{5}^{1}+C_{5}^{2}-C_{5}^{3}+C_{5}^{4}-C_{5}^{5}=0$
$C_{5}^{0}-C_{5}^{1}+C_{5}^{2}-C_{5}^{3}+C_{5}^{4}-C_{5}^{5}=0(*)$
$VT(*)=\left( C_{5}^{0}-C_{5}^{5} \right)+\left( C_{5}^{4}-C_{5}^{1} \right)+\left( C_{5}^{2}-C_{5}^{3} \right)$
$=\left( C_{5}^{0}-C_{5}^{0} \right)+\left( C_{5}^{1}-C_{5}^{1} \right)+\left( C_{5}^{2}-C_{5}^{2} \right)$
$=0+0+0$
$=0=VP(*)$
$\Rightarrow $đpcm
Xem toàn bộ: Giải bài 3 Nhị thức Newton
Bình luận