Giải bài tập 6.43 trang 26 Toán 8 tập 2 KNTT
Bài tập 6.43 trang 26 Toán 8 tập 2 KNTT. Cho phân thức $P=\frac{2x+1}{x+1}$
a) Viết điều kiện xác định của P
b) Hãy viết P dưới dạng $a-\frac{b}{x+1}$, trong đó a, b là số nguyên dương
c) Với giá trị nào của x thì P có giá trị là số nguyên
a) Điều kiện xác định của P: $x+1\neq 0$ => $x\neq -1$
b) $P=\frac{2x+1}{x+1}=2-\frac{1}{x+1}$
=> $a=2$, $b=1$
c) Có $P=\frac{2x+1}{x+1}$ với điều kiện $x\neq -1$
Để $\frac{1}{x+1}$ nhận giá trị nguyên thì $1\vdots (x+1) <=> x+1 \in U(1)={± 1}$
Ta có bảng:
x +1 | -1 | 1 |
x | 0 | -2 |
Vậy với x=0 và x=-2 thì biểu thức thì $P=\frac{2x+1}{x+1}$ nhận giá trị nguyên
Xem toàn bộ: Giải toán 8 Kết nối bài tập cuối chương VI
Bình luận