Giải bài 4.23 bài vectơ trong mặt phẳng tọa độ
Bài tập 4.23. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2), B(-4; 3). Gọi M(t; 0) là một điểm thuộc trục hoành.
a. Tính $\overrightarrow{AM}.\overrightarrow{BM}$ theo t.
b. Tìm t để $\widehat{AMB} = 90^{o}$.
a. $\overrightarrow{AM}(t-1;-2)$ và $\overrightarrow{BM}(t+4;-3)$
$\overrightarrow{AM}.\overrightarrow{BM}=(t-1).(t+4)+2.3=(t-1).(t+4)+6$
b. $\widehat{AMB} = 90^{o}$ => đường thẳng AM vuông góc với đường thẳng BM.
=> $\overrightarrow{AM}.\overrightarrow{BM}=0$
Hay là: $(t-1).(t+4)+2.3=(t-1).(t+4)+6=0$
$\Leftrightarrow t^{2}+3t+2=0$
$t=-2$ và $t=-1$.
Xem toàn bộ: Giải bài 11 Tích vô hướng của hai vectơ
Bình luận