Dạng 1: Chứng minh đẳng thức chứa lôgarit

Phần tham khảo mở rộng

Dạng 1: Chứng minh đẳng thức chứa lôgarit


I. Phương pháp giải:

Áp dụng các công thức biến đổi lôgarit, công thức đổi cơ số,... để biến đổi vế này về vế kia hoặc hai vế cùng bằng một đại lượng thứ ba,...

II. Bài tập áp dụng

Bài tập 1: Cho a, b, c là ba số dương khác 1. Chứng minh: 

a) $\frac{\log_a c}{\log_{ab}c}=1+\log_a b$

b) $a^{\log_c b }= b^{\log_c a }$.

Bài giải: a) $\frac{\log_a c}{\log_{ab}c}=1+\log_a b$

$\Leftrightarrow \log_a c\times \log_{c}(ab) = 1+\log_a b$

$\Leftrightarrow \log_a c\times( \log_{c}a+\log_c b) = 1+\log_a b$

$\Leftrightarrow \log_a c\times \log_{c}a+log_a c\times\log_c b = 1+\log_a b$

$\Leftrightarrow  1+\log_a b = 1+\log_a b$ (luôn đúng).

b) Lôgarit hai vế cơ số a ta được,

$\log_a (a^{\log_c b })=\log_a(b^{\log_c a })$

$\Leftrightarrow \log_c b = \log_c a \times \log_a b$

$\Leftrightarrow \log_c b = log_c b$ (luôn đúng).

Bài tập 2: Cho x, y là các số thực lớn hơn 1 thoả mãn $x^2+9y^2=6xy.$ Chứng minh:

$\frac{1+\log_{12}x+\log_{12}y}{2\log_{12}(x+3y)}=1.$

Bài giải: Ta thấy $x^2+9y^2=6xy \Leftrightarrow (x-3y)^2=0 \Leftrightarrow x=3y $. 

Do đó: 

$\frac{1+\log_{12}x+\log_{12}y}{2\log_{12}(x+3y)}=\frac{\log_{12}(36y^2)}{\log_{12}(36y^2)}=1.$


Xem toàn bộ: Giải Bài 3: Lôgarit

Câu hỏi và bài tập trắc nghiệm toán 12 bài 3: Lôgarit

Bình luận

Giải bài tập những môn khác