Hai đường thẳng AB và CD cắt nhau tại O. Cho Om là tia phân giác của góc BOD và$ \widehat{BOM}=30^{\circ}$. Số đo của góc AOC bằng:

5. Hai đường thẳng AB và CD cắt nhau tại O. Cho Om là tia phân giác của góc BOD và$ \widehat{BOM}=30^{\circ}$. Số đo của góc AOC bằng:

A. $30^{\circ}$;

B. $60^{\circ}$;

C. $120^{\circ}$;

D. Một kết quả khác.


Vì Om là tia phân giác của góc BOD nên $\widehat{BOM}=\widehat{MOD}=\frac{\widehat{BOD}}{2}=30^{\circ}$.

Suy ra $\widehat{BOD}=2 \times 30^{\circ}=60^{\circ}$.

Lại có, $\widehat{BOD}$ và $\widehat{AOC}$ là hai góc đối đỉnh nên $\widehat{BOD}=\widehat{AOC}=60^{\circ}$.

Đáp án: B


Bình luận

Giải bài tập những môn khác