Giải câu 19 bài 5: Công thức nghiệm thu gọn sgk Toán đại 9 tập 2 Trang 49

Câu 19: trang 49 sgk toán lớp 9 tập 2

Đố: Đố em biết vì sao khi a > 0 và phương trình $ax^{2}+bx+c=0$vô nghiệm thì $ax^{2}+bx+c>0$với mọi giá trị của x?


Ta có phương trình $ax^{2}+bx+c=0$vô nghiệm

$\Rightarrow \Delta <0$hay $b^{2}-4ac<0\Rightarrow -b^{2}+4ac>0$

Chia cả hai vế cho $4a (a>0)$

Ta được: $\frac{-b^{2}+4ac}{4a}>0$

Ta có: 

$ax^{2}+bx+c=a\left ( x^{2}+\frac{b}{a}x+\frac{c}{a} \right )$

$=a\left ( x^{2}+2\frac{b}{2a}x+\frac{b^{2}}{4a^{2}}-\frac{b^{2}}{4a^{2}}+\frac{4c}{4a} \right )$

$=a\left ( x+\frac{b}{2a} \right )^{2}-\frac{b^{2}-4ac}{4a}$

Ta có: 

$\left\{\begin{matrix}a>0 & \\ \left ( x+\frac{b}{2a} \right )^{2}\geq 0 & \\ -\frac{b^{2}-4ac}{4a}>0 & \end{matrix}\right.$

$\Rightarrow a\left ( x+\frac{b}{2a} \right )^{2}-\frac{b^{2}-4ac}{4a}>0$

với mọi x (đpcm)


Trắc nghiệm đại số 9 bài 5: Công thức nghiệm thu gọn
Từ khóa tìm kiếm Google: giải câu 19 trang 49 sgk toán 9 tập 2, giải bài tập 19 trang 49 toán 9 tập 2, toán 9 tập 2 câu 19 trang 49, Câu 19 Bài 5 Công thức nghiệm thu gọn sgk toán 9 tập 2

Bình luận

Giải bài tập những môn khác