Giải bài tập 9.2 trang 63 SBT toán 10 tập 2 kết nối
9.2. Gieo một con xúc xắc đồng thời rút ngẫu nhiên một thẻ từ một hộp chứa 4 thẻ A, B, C, D.
a) Mô tả không gian mẫu.
b) Xét các biến cố sau:
E: “Con xúc xắc xuất hiện mặt 6”;
F: “Rút được thẻ A hoặc con xúc xắc xuất hiện mặt 5”.
Các biến cố E, $\overline{E}$ , F và $\overline{F}$ là các tập con nào của không gian mẫu?
a) Khi gieo con xúc xắc 1 lần, ta sẽ nhận được số chấm a là số tự nhiên bất kì xuất hiện với 1 ≤ a ≤ 6.
Khi rút ngẫu nhiên một thẻ từ một hộp chứa 4 thẻ A, B, C, D ta sẽ nhận được 1 phần tử bất kì trong tập hợp {A; B; C; D}
Do đó, không gian mẫu là:
Ω = {(1, A); (1, B); (1, C); (1, D); (2, A); (2, B); (2, C); (2, D); (3, A); (3, B); (3, C); (3, D); (4, A); (4, B); (4, C); (4, D); (5, A); (5, B); (5, C); (5, D); (6, A); (6, B); (6, C); (6, D)}.
b) Xét biến cố E: “Con xúc xắc xuất hiện mặt 6”. Ta có:
E = {(6, A); (6, B); (6, C); (6, D)}.
Xét biến cố $\overline{E}$ = Ω\E = {(1, A); (1, B); (1, C); (1, D); (2, A); (2, B); (2, C); (2, D); (3, A); (3, B); (3, C); (3, D); (4, A); (4, B); (4, C); (4, D); (5, A); (5, B); (5, C); (5, D)}.
Xét biến cố F: “Rút được thẻ A hoặc con xúc xắc xuất hiện mặt 5”. Ta có:
Gọi biến cố F1: “Rút được thẻ A”. Ta có:
F1 = {(1, A); (2, A); (3, A); (4, A); (5, A); (6, A)}.
Gọi biến cố F2: “Con xúc xắc xuất hiện mặt 5”. Ta có:
F2 = {(5, A); (5, B); (5, C); (5, D)}
Do đó, ta có: F = F1 ∪ F2 = {(1, A); (2, A); (3, A); (4, A); (5, A); (6, A); (5, B); (5, C); (5, D)}.
Xét biến cố $\overline{F}$ = Ω\F = {(1, B); (1, C); (1, D); (2, B); (2, C); (2, D); (3, B); (3, C); (3, D); (4, B); (4, C); (4, D); (6, B); (6, C); (6, D)}.
Bình luận