Giải bài tập 25 trang 42 SBT toán 10 tập 2 cánh diều

25. Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:

a) A: “Lần thứ hai xuất hiện mặt 5 chấm”;

b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7”;

c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3”;

d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố”;

e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai”.


Không gian mẫu của trò chơi trên là tập hợp Ω = {(i; j) | i; j = 1; 2; 3; 4; 5; 6}.

Do đó n(Ω) = 36.

a) Các kết quả thuận lợi cho biến cố A là: (1; 5), (2; 5), (3; 5), (4; 5), (5; 5), (6; 5).

Tức là, A = {(1; 5), (2; 5), (3; 5), (4; 5), (5; 5), (6; 5)}.

Vì thế, n(A) = 6.

Vậy xác suất của biến cố A là: $P(A)=\frac{n(A)}{n(\Omega )}=\frac{6}{36}=\frac{1}{6}$.

b) Các kết quả thuận lợi cho biến cố B là: (1; 6), (6; 1), (2; 5), (5; 2), (3; 4), (4; 3).

Tức là, B = {(1; 6), (6; 1), (2; 5), (5; 2), (3; 4), (4; 3)}.

Vì thế, n(B) = 6.

Vậy xác suất của biến cố B là: $P(B)=\frac{n(B)}{n(\Omega )}=\frac{6}{36}=\frac{1}{6}$.

c) Các kết quả thuận lợi cho biến cố C là: (1; 2), (1; 5), (2; 1), (2; 4), (3; 3), (3; 6), (4; 2), (4; 5), (5; 1), (5; 4), (6; 3), (6; 6).

Tức là, C = {(1; 2), (1; 5), (2; 1), (2; 4), (3; 3), (3; 6), (4; 2), (4; 5), (5; 1), (5; 4), (6; 3), (6; 6)}.

Vì thế, n(C) = 12.

Vậy xác suất của biến cố C là: $P(C)=\frac{n(C)}{n(\Omega )}=\frac{12}{36}=\frac{1}{3}$.

d) Các kết quả thuận lợi cho biến cố D là: (2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 1), (3; 2), (3; 3), (3; 4), (3; 5), (3; 6), (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6).

Tức là, D = {(2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 1), (3; 2), (3; 3), (3; 4), (3; 5), (3; 6), (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6)}.

Vì thế, n(D) = 18.

Vậy xác suất của biến cố D là: $P(D)=\frac{n(D)}{n(\Omega )}=\frac{18}{36}=\frac{1}{2}$.

e) Các kết quả thuận lợi cho biến cố E là: (1; 2), (1; 3), (1; 4), (1; 5), (1; 6), (2; 3), (2; 4), (2; 5), (2; 6), (3; 4), (3; 5), (3; 6), (4; 5), (4; 6), (5; 6).

Tức là, E = {(1; 2), (1; 3), (1; 4), (1; 5), (1; 6), (2; 3), (2; 4), (2; 5), (2; 6), (3; 4), (3; 5), (3; 6), (4; 5), (4; 6), (5; 6)}.

Vì thế, n(E) = 15.

Vậy xác suất của biến cố E là: $P(E)=\frac{n(E)}{n(\Omega )}=\frac{15}{36}=\frac{5}{12}$.


Bình luận

Giải bài tập những môn khác