Giải bài tập 1.32 trang 14 SBT toán 10 tập 1 kết nối

Bài tập 1.32. Mệnh đề phủ định của mệnh đề “$x^{2}$ + 3x + 1 > 0, với mọi x $\epsilon$ $\mathbb{R}$" là

A. Tồn tại x $\epsilon$ $\mathbb{R}$ sao cho $x^{2}$ + 3x + 1 > 0.

B. Tồn tại x $\epsilon$ $\mathbb{R}$ sao cho $x^{2}$ + 3x + 1 $\leq$ 0.

C. Tồn tại x $\epsilon$ $\mathbb{R}$ sao cho $x^{2}$ + 3x + 1 = 0.

D. Tồn tại x $\epsilon$ $\mathbb{R}$ sao cho $x^{2}$ + 3x + 1 < 0.


Trả lời: Chọn đáp án: B. Tồn tại x $\epsilon$ $\mathbb{R}$ sao cho $x^{2}$ + 3x + 1 $\leq$ 0.


Từ khóa tìm kiếm Google: giải toán 10 kết nối tập 1, giải sách kết nối 10 môn toán tập 1, giải toán sách mới bài 10 tập 1, Bài tập cuối chương 1

Bình luận

Giải bài tập những môn khác