Giải bài 3.9 bài hệ thức lượng trong tam giác

Bài tập 3.9. Trên nóc một tòa nhà có một ăng-ten cao 5m. Từ một vị trí quan sát A cao 7m so với mặt đất có thể nhìn thấy đỉnh B và chân C của cột ăng-ten, với các góc tương ứng là 50và 40so với phương nằm ngang.

a. Tính các góc của tam giác ABC.

b. Tính chiều cao của tòa nhà.

Giải bài 6 Hệ thức lượng trong tam giác


a. Gọi D là hình chiếu của A lên tòa nhà.

Xét tam giác CDA vuông tại D có: C = 90o – A = 50o

Suy ra góc BCA = 130o

Ta có: $\widehat{CAB}=50^{o}-40^{o}=10^{o}$

$\widehat{CBA}=180^{o}-10^{o}-130^{o}=40^{o}$

b.

  • Áp dụng định lí sin trong tam giác ABC, ta có: $\frac{a}{sin A}=\frac{b}{sin B}=\frac{c}{sin C}$

$\frac{BC}{sin A}=\frac{AC}{sin B}$

$\Rightarrow AC \approx 18,5$

  • Xét tam giác CDA vuông tại D có: CD = AC.sin 40o = 11,9$ m
  • Chiều cao của tòa nhà là: 7 + 11,9 = 18,9 m.

Trắc nghiệm Toán 10 kết nối bài 6 Hệ thức lượng trong tam giác

Bình luận

Giải bài tập những môn khác