Giải bài 2 trang 94 SBT toán 10 tập 1 chân trời

Bài 2 : Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:

a) $\overrightarrow{AB}$ + $\overrightarrow{BC}$ + $\overrightarrow{CD}$ + $\overrightarrow{DA}$ = $\overrightarrow{0}$ .

b) $\overrightarrow{AB}$ - $\overrightarrow{AD}$ = $\overrightarrow{CB}$ - $\overrightarrow{CD}$ .


a) Theo quy tắc ba điểm của phép cộng vectơ, ta có: 

$\overrightarrow{AB}$ + $\overrightarrow{BC}$ = $\overrightarrow{AC}$ ; $\overrightarrow{CD}$ + $\overrightarrow{DA}$ = $\overrightarrow{CA}$ .

Suy ra $\overrightarrow{AB}$ + $\overrightarrow{BC}$ + $\overrightarrow{CD}$ + $\overrightarrow{DA}$ = ( $\overrightarrow{AB}$ + $\overrightarrow{AB}$ ) + ( $\overrightarrow{CD}$ + $\overrightarrow{DA}$ ) = $\overrightarrow{AC}$ + $\overrightarrow{CA}$ = $\overrightarrow{AA}$ = $\overrightarrow{0}$ .

Vậy $\overrightarrow{AB}$ + $\overrightarrow{BC}$ + $\overrightarrow{CD}$ + $\overrightarrow{DA}$ = $\overrightarrow{0}$ .

b) Ta có : $\overrightarrow{AB}$ - $\overrightarrow{AD}$ = $\overrightarrow{DB}$ và $\overrightarrow{CB}$ - $\overrightarrow{CD}$ = $\overrightarrow{DB}$ .

Suy ra $\overrightarrow{AB}$ - $\overrightarrow{AD}$ = $\overrightarrow{CB}$ - $\overrightarrow{CD}$ .


Từ khóa tìm kiếm Google: Giải bài tập toán 10 sách chân trời, Giải bài tập toán 10, Đáp án bài 2 Tổng và hiệu của hai vectơ trang 91 toán 10, Sbt toán 10 bài 2 Tổng và hiệu của hai vectơ, Giải toán 10 bài 2 trang 94, Lời giải toán 10 bài 2 trang 94 sách chân trời sáng tạo, toán 10 chân trời sáng tạo trang 94, toán 10 bài 2 trang 94 bài tập

Bình luận

Giải bài tập những môn khác