Cho tam giác ABC có trung tuyến AM và G là trọng tâm.
BÀI TẬP
Bài 1. Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh:
a) $S_{AMB}=S_{AMC}$
b) $S_{ABG}=2S_{BMG}$
c) $S_{GAB}=S_{GBC}=S_{GAC}$
a) Vẽ đường cao AH của tam giác ABC.
Hai tam giác AMB và AMC có cùng đường cao AH và có cạnh đáy bằng nhau: BM = CM.
Suy ra $S_{AMB}=S_{AMC}$
b) Vẽ đường cao BK của tam giác BGM.
Hai tam giác ABG và BMG có cùng đường cao BK và có cạnh đáy AG = 2MG.
Suy ra $S_{ABG}=2S_{BMG}$
c) Ta có $S_{ABG}=\frac{2}{3}S_{ABM}=\frac{1}{3}S_{ABC}$
Tương tự $S_{ACG}=\frac{2}{3}S_{ACM}=\frac{1}{3}S_{ABC}$
Suy ra $S_{BCG}=\frac{1}{3}S_{ABC}$
Vậy $S_{GAB}=S_{GBC}=S_{GAC}=\frac{1}{3}S_{ABC}$
Bình luận