Giải SBT Toán 10 Cánh diều bài 5 Hai dạng phương trình quy về phương trình bậc hai

Hướng dẫn giải bài 5 Hai dạng phương trình quy về phương trình bậc hai trang 57 VBT toán 10. Đây là vở bài tập nằm trong bộ sách "Cánh diều" được biên soạn theo chương trình đổi mới của Bộ giáo dục. Hi vọng, với cách hướng dẫn cụ thể và giải chi tiết học sinh sẽ nắm bài học tốt hơn.


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây


Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây

B. Bài tập và hướng dẫn giải

Bài 36 : Trong các phát biểu sau, phát biểu nào đúng?

A. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(xlà tập nghiệm của phương trình f(x) = g(x).

B. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(xlà tập nghiệm của phương trình [f(x)]2 = [g(x)]2.

C. Mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f(x)=g(x)">f(x)=g(x).

D. Tập nghiệm của phương trình f(x)=g(x)">f(x)=g(x) là tập nghiệm của phương trình f(x) = g(x) thỏa mãn bất phương trình f(x) ≥ 0 (hoặc g(x) ≥ 0).

Bài 37 : Trong các phát biểu sau, phát biểu nào đúng?

A. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]2.

B. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0.

C. Mọi nghiệm của phương trình f(x) = [g(x)]x2 đều là nghiệm của phương trình √f(x)=g(x).

D. Tập nghiệm của phương trình √f(x)=g(x) là tập nghiệm của phương trình f(x) = [g(x)]x2 thỏa mãn bất phương trình f(x) ≥ 0

Bài 38 : Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình f(x)=g(x)">√f(x)=g(x)">f(x)=g(x)">ff(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">) f(x)=g(x)">= f(x)=g(x)">gf(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">).

Bài 39 : Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình f(x)=g(x)">f(x)=g(x)">f(x)=g(x)">f(x)=g(x)">√f(x)=g(x)">f(x)=g(x)">ff(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">) f(x)=g(x)">= f(x)=g(x)">gf(x)=g(x)">(f(x)=g(x)">xf(x)=g(x)">)f(x)=g(x)">.

Bài 40 : Giải các phương trình sau:

Bài 41 : Giải các phương trình sau:

Bài 42 : Để leo lên một bức tường, bác Dũng dùng một chiếc thang cao hơn bức tường đó 2m. Ban đầu bác Dũng đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên của bức tường (Hình 21a). Sau đó, bác Dũng dịch chuyển chân thang vào gần bức tường thêm 1m thì bác Dũng nhận thấy thang tạo với mặt đất một góc 45° (Hình 21b). Bức tường cao bao nhiêu mét?

Bài 43 : Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6km/h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3km/h. Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH = 300m và gặp người đi bộ tại địa điểm cách B một khoảng BH = 1 400m. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không tới cùng lúc. Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C (Hình 22).

a) Tính khoảng cách CB.

b) Tính thời gian từ khi hai người xuất phát cho đến khi gặp nhau cùng lúc.

 

Bài 44 : Người ta muốn thiết kế một vườn hoa hình chữ nhật nội tiếp trong một miếng đất hình tròn có đường kính bằng 50 m (Hình 23). Xác định kích thước vườn hoa hình chữ nhật để tổng quãng đường đi xung quanh vườn hoa đó là 140 m.

 Hai dạng phương trình quy về phương trình bậc hai - Cánh diều (ảnh 1)

Nội dung quan tâm khác

Thêm kiến thức môn học

Bình luận

Giải bài tập những môn khác