Giải Câu 7 Bài: Ôn tập chương 3 sgk Hình học 10 Trang 93
Câu 7: Trang 93 - SGK Hình học 10
Cho đường tròn \((C)\) có tâm \(I(1, 2)\) và bán kính bằng \(3\). Chứng minh rằng tập hợp các điểm \(M\) từ đó ta sẽ được hai tiếp tuyến với \((C)\) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó.
Theo tính chất của tiếp tuyến ta có: \(\widehat {AMI} = {30^0}\)
\(IM = {{IA} \over {\sin \widehat {AMI}}} = {3 \over {\sin {{30}^0}}} = {3 \over {{1 \over 2}}} = 6\)
Gọi tọa độ của \(M\) là \((x ;y)\) Ta có:
\(O{M^2} = {(x - 1)^2} + {(y - 2)^2} = 36\)
Vậy quỹ tích \(M\) là đường tròn tâm \(I (1; 2)\), bán kính \(R = 6\)
Phương trình đường tròn là: \({(x - 1)^2} + {(y - 2)^2} = 36\)
Từ khóa tìm kiếm Google: giải câu 7 trang 93 sgk hình học 10, giải bài tập 7 trang 93 hình học 10, hình học 10 câu 7 trang 93, Câu 7 Bài Ôn tập chương 3 sgk hình học 10
Bình luận