Giải bài: Ôn tập chương II - tích vô hướng của hai vecto và ứng dụng
Bài học tổng quát toàn bộ nội dung chương II: Tích vô hướng của hai Vecto và ứng dụng. Một kiến thức không quá khó song đòi hỏi các bạn học sinh cần nắm được phương pháp để giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 10, Tech12h sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn
A. Tổng hợp kiến thức
I. Tính chất lượng giác
$\sin \alpha =\sin (180^{\circ}-\alpha )$ $\cos \alpha =-\cos (180^{\circ}-\alpha )$ $\tan \alpha =-\tan (180^{\circ}-\alpha )$ $\cot \alpha =-\cot (180^{\circ}-\alpha )$
|
- Bài học về giá trị lượng giác : https://tech12h.com/bai-hoc/giai-bai-1-gia-tri-luong-giac-cua-mot-goc-bat-ki.html
II. Tính chất tích vô hướng và ứng dụng
1. Tính chất tích vô hướng
- Với ba vectơ $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. ta có:
$\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ $\overrightarrow{a}.(\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}$ $(k\overrightarrow{a}).\overrightarrow{b}=k(\overrightarrow{a}.\overrightarrow{b})=\overrightarrow{a}.(k\overrightarrow{b})$ $\overrightarrow{a^{2}}\geq 0,\overrightarrow{a^{2}}=0 <=>\overrightarrow{a}=\overrightarrow{0}$ |
2. Ứng dụng
Độ dài vectơ
$\left | \overrightarrow{a} \right |=\sqrt{a_{1}^{2}+a_{2}^{2}}$ |
Góc giữa hai vectơ
$\cos (\overrightarrow{a},\overrightarrow{b})=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left | \overrightarrow{a} \right |.\left | \overrightarrow{b} \right |}=\frac{a_{1}b_{1}+a_{2}b_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}.\sqrt{b_{1}^{2}+b_{2}^{2}}}$ |
Khoảng cách giữa hai điểm
- Cho hai điểm $A(x_{A},y_{A})$ và $B(x_{B},y_{B})$, ta có:
$AB=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}$ |
- Tích vô hướng của hai vectơ : https://tech12h.com/bai-hoc/giai-bai-2-tich-vo-huong-cua-hai-vecto.html
III. Hệ thức lượng trong tam giác
1. Định lí Côsin
- Trong tam giác ABC bất kì với $BC = a ; CA=b ; AB =c$, ta có:
$a^{2}=b^{2}+c^{2}-2bc\cos A$ $b^{2}=a^{2}+c^{2}-2ac\cos B$ $c^{2}=a^{2}+b^{2}-2ab\cos C$ |
Hệ quả
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}$ $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}$ $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}$ |
2. Định lí sin
- Trong tam giác ABC bất kì với $BC = a ; CA=b ; AB =c$, R là bán kính đường tròn ngoại tiếp ,ta có:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$ |
3. Công thức tính diện tích tam giác
- Cho tam giác ABC bất kì với $BC = a ; CA=b ; AB =c$, R và r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác ; $p=\frac{a+b+c}{2}$ là nửa chu vi tam giác , ta có :
$S=\frac{1}{2}ab\sin C=\frac{1}{2}bc\sin A=\frac{1}{2}ac\cos B$ $S=\frac{abc}{4R}$ $S=p.r$ $S=\sqrt{p(p-a)(p-b)(p-c)}$ - công thức Hê-rông |
- Các hệ thức lượng trong tam giác và giải tam giác : https://tech12h.com/bai-hoc/giai-bai-3-cac-he-thuc-luong-trong-tam-giac-va-giai-tam-giac.html
Bình luận