Chuyên đề đồ thị hàm số chứa dấu trị tuyệt đối
Đây là chuyên đề không mới nhưng nó thường gây bối rối và khó khăn cho học sinh. Học sinh sẽ lúng túng khi gặp các hàm số có dấu trị tuyệt đối, không biết tìm cách nào để phá dấu trị tuyệt đối ra hoặc thường mắc sai lầm khi tự nhiên vứt dấu trị tuyệt đối đi mà không xét điều kiện cho nó.

Lý thuyết chung: $|A|=\left\{\begin{matrix} A \: khi \, A \geq 0\\ -A \: khi \: A<0\end{matrix}\right.$.
1. Đồ thị hàm số $y=|f(x)|$.
Phương pháp: Gọi (C) là đồ thị của hàm số $y=f(x)$.
Hàm số $|f(x)|=\left\{\begin{matrix} f(x) \: khi \, f(x) \geq 0\\ -f(x) \: khi \: f(x)<0\end{matrix}\right.$.
Tức là
- Giữ nguyên phần đồ thị hàm số (C) phía trên trục Ox, đặt là $(C_{1})$.
- Phần đồ thị (C) phía dưới trục Ox đem lấy đối xứng qua Ox được phần đồ thị mới đặt là $(C_{2})$.
- Đồ thị hàm số $y=|f(x)|$ là $(C_{1}) \cup (C_{2})$.
Ví dụ: Vẽ đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ biết đồ thị hàm số $y=x^{3}+3x^{2}-2$ là
Giải: Ta có $y=|x^{3}+3x^{2}-2|=\left\{\begin{matrix} x^{3}+3x^{2}-2 \: khi \: x \in [-1-\sqrt{3},-1] \cup [-1+\sqrt{3}, +\infty) \\ -(x^{3}+3x^{2}-2) \: khi \: x \in (-\infty, -1-\sqrt{3}) \cup (-1, -1+\sqrt{3})\end{matrix}\right.$.
Ta thấy đồ thị hàm số $y=-(x^{3}+3x^{2}-2)$ (màu đỏ) là đồ thị đối xứng của đồ thị $y=x^{3}+3x^{2}-2$ (màu xanh) qua trục Ox.
Đồ thị $y=x^{3}+3x^{2}-2$ ta chỉ lấy trong khoảng $ x \in [-1-\sqrt{3},-1] \cup [-1+\sqrt{3}, +\infty)$ và đồ thị $y=-(x^{3}+3x^{2}-2)$ ta lấy trong khoảng $x \in (-\infty, -1-\sqrt{3}) \cup (-1, -1+\sqrt{3})$. Ta có đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ như sauHay
- Bước 1: Giữ nguyên phần đồ thị (C) phía trên trục Ox, đặt là $(C_{1})$
- Bước 2: Phần đồ thị (C) bên dưới trục Ox đem lấy đối xứng qua Ox được phần đồ thị mới đặt $(C_{2})$.
Ta có đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ là $C_{1} \cup C_{2}$.
2. Đồ thị hàm số $y=f(|x|)$
Phương pháp: Gọi (C) là đồ thị hàm số $y=f(x)$.
Ta có $y=f(|x|)=\left\{\begin{matrix} f(x) \: khi \: x \geq 0\\ f(-x) \: khi \: x <0 \end{matrix} \right. $
Tức là
- Bên phải trục Oy giữ nguyên (C) đặt là $(C_{1})$, bỏ phần (C) còn lại.
- Lấy đối xứng với $(C_{1})$ ở trên qua Oy được $(C_{2})$.
- Đồ thị hàm số $y=f(|x|)$ là $(C_{1}) \cup (C_{2})$
Ví dụ: Vẽ đồ thị hàm số $y=|x|^{3}-3x^{2}+1$ biết đồ thị hàm số $y=x^{3}-3x^{2}+1$ là
Giải:
$y=|x|^{3}-3x^{2}+1=\left\{\begin{matrix} x^{3}-3x^{2}+1 \: khi \: x \geq 0\\ -x^{3}-3x^{2}+1 \: khi \: x <0 \end{matrix}\right.$
Ta thấy đồ thị hàm số $y=-x^{3}-3x^{2}+1$ (màu đen) là đồ thị đối xứng của đồ thị hàm số $y=x^{3}-3x^{2}+1$ (màu nâu) qua trục Oy.
Đồ thị hàm số $y=x^{3}-3x^{2}+1$ lấy trong khoảng $x \geq 0$ và đồ thị hàm số $y=-x^{3}-3x^{2}+1$ lấy trong khoảng x<0. Vậy đồ thị hàm số $y=|x|^{3}-3x^{2}+1$ như sau
Hay
- Bước 1: Giữ nguyên phần đồ thị bên phải trục tung của đồ thị hàm số (C) ta đặt là $(C_{1})$.
- Bước 2: Lấy đối xứng với $(C_{1})$ ở trên qua trục Oy được đồ thị $(C_{2})$.
- Đồ thị hàm số $y=|x|^{3}-3x^{2}+1$ là $(C_{1}) \cup (C_{2})$
3. Đồ thị hàm số $y=|f(x)|. g(x)$
Ta có $y=|f(x)|.g(x)=\left\{\begin{matrix} f(x).g(x) \: khi \: f(x) \geq 0\\ -f(x).g(x) \: khi \: f(x)<0\end{matrix}\right.$.
Phương pháp:
- Bước 1: Vẽ đồ thị hàm số $y=f(x).g(x)$.
- Bước 2: Lấy đối xứng đồ thị hàm số $y=f(x).g(x)$ qua trục Ox ta được đồ thị hàm số $y=-f(x)g(x)$.
- Bước 3: Đồ thị hàm số cần tìm là phần đồ thị hàm số $y=f(x).g(x)$ khi $f(x) \geq 0$ và phần đồ thị hàm số $y=-f(x).g(x)$ khi $f(x) <0.$
Ví dụ: Vẽ đồ thị hàm số $y=|x-1|.(x^{2}-x-2)$.
Giải: $y=|x-1|(x^{2}-x-2)=\left\{\begin{matrix} x^{3}-2x^{2}-x+2 \: khi \: x \geq 1 \\ -(x^{3}-2x^{2}-x+2) \: khi \: x <1 \end{matrix}\right.$
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$ là đối xứng của đồ thị hàm số $y=-(x^{3}-2x^{2}-x+2$.
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$ lấy trong khoảng $x \geq 1$ và đồ thị hàm số $y=-(x^{3}-2x^{2}-x+2$ lấy trong khoảng $x<1$ ta có đồ thị hàm số $y=|x-2|(x^{2}-x-2)$. như sau
Giải bài tập những môn khác
Môn học lớp 12 KNTT
5 phút giải toán 12 KNTT
5 phút soạn bài văn 12 KNTT
Văn mẫu 12 KNTT
5 phút giải vật lí 12 KNTT
5 phút giải hoá học 12 KNTT
5 phút giải sinh học 12 KNTT
5 phút giải KTPL 12 KNTT
5 phút giải lịch sử 12 KNTT
5 phút giải địa lí 12 KNTT
5 phút giải CN lâm nghiệp 12 KNTT
5 phút giải CN điện - điện tử 12 KNTT
5 phút giải THUD12 KNTT
5 phút giải KHMT12 KNTT
5 phút giải HĐTN 12 KNTT
5 phút giải ANQP 12 KNTT
Môn học lớp 12 CTST
5 phút giải toán 12 CTST
5 phút soạn bài văn 12 CTST
Văn mẫu 12 CTST
5 phút giải vật lí 12 CTST
5 phút giải hoá học 12 CTST
5 phút giải sinh học 12 CTST
5 phút giải KTPL 12 CTST
5 phút giải lịch sử 12 CTST
5 phút giải địa lí 12 CTST
5 phút giải THUD 12 CTST
5 phút giải KHMT 12 CTST
5 phút giải HĐTN 12 bản 1 CTST
5 phút giải HĐTN 12 bản 2 CTST
Môn học lớp 12 cánh diều
5 phút giải toán 12 CD
5 phút soạn bài văn 12 CD
Văn mẫu 12 CD
5 phút giải vật lí 12 CD
5 phút giải hoá học 12 CD
5 phút giải sinh học 12 CD
5 phút giải KTPL 12 CD
5 phút giải lịch sử 12 CD
5 phút giải địa lí 12 CD
5 phút giải CN lâm nghiệp 12 CD
5 phút giải CN điện - điện tử 12 CD
5 phút giải THUD 12 CD
5 phút giải KHMT 12 CD
5 phút giải HĐTN 12 CD
5 phút giải ANQP 12 CD
Giải chuyên đề học tập lớp 12 kết nối tri thức
Giải chuyên đề Ngữ văn 12 Kết nối tri thức
Giải chuyên đề Toán 12 Kết nối tri thức
Giải chuyên đề Vật lí 12 Kết nối tri thức
Giải chuyên đề Hóa học 12 Kết nối tri thức
Giải chuyên đề Sinh học 12 Kết nối tri thức
Giải chuyên đề Kinh tế pháp luật 12 Kết nối tri thức
Giải chuyên đề Lịch sử 12 Kết nối tri thức
Giải chuyên đề Địa lí 12 Kết nối tri thức
Giải chuyên đề Tin học ứng dụng 12 Kết nối tri thức
Giải chuyên đề Khoa học máy tính 12 Kết nối tri thức
Giải chuyên đề Công nghệ 12 Điện - điện tử Kết nối tri thức
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Kết nối tri thức
Giải chuyên đề học tập lớp 12 chân trời sáng tạo
Giải chuyên đề Ngữ văn 12 Chân trời sáng tạo
Giải chuyên đề Toán 12 Chân trời sáng tạo
Giải chuyên đề Vật lí 12 Chân trời sáng tạo
Giải chuyên đề Hóa học 12 Chân trời sáng tạo
Giải chuyên đề Sinh học 12 Chân trời sáng tạo
Giải chuyên đề Kinh tế pháp luật 12 Chân trời sáng tạo
Giải chuyên đề Lịch sử 12 Chân trời sáng tạo
Giải chuyên đề Địa lí 12 Chân trời sáng tạo
Giải chuyên đề Tin học ứng dụng 12 Chân trời sáng tạo
Giải chuyên đề Khoa học máy tính 12 Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Điện - điện tử Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Chân trời sáng tạo
Giải chuyên đề học tập lớp 12 cánh diều
Giải chuyên đề Ngữ văn 12 Cánh diều
Giải chuyên đề Toán 12 Cánh diều
Giải chuyên đề Vật lí 12 Cánh diều
Giải chuyên đề Hóa học 12 Cánh diều
Giải chuyên đề Sinh học 12 Cánh diều
Giải chuyên đề Kinh tế pháp luật 12 Cánh diều
Giải chuyên đề Lịch sử 12 Cánh diều
Giải chuyên đề Địa lí 12 Cánh diều
Giải chuyên đề Tin học ứng dụng 12 Cánh diều
Giải chuyên đề Khoa học máy tính 12 Cánh diều
Giải chuyên đề Công nghệ 12 Điện - điện tử Cánh diều
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Cánh diều
Bình luận