Soạn giáo án điện tử Toán 12 KNTT Bài 7: Hệ trục toạ độ trong không gian
Giáo án powerpoint Toán 12 kết nối tri thức Bài 7: Hệ trục toạ độ trong không gian. Giáo án PPT soạn theo tiêu chí hiện đại, đẹp mắt với nhiều hình ảnh, nội dung, hoạt động phong phú, sáng tạo. Giáo án điện tử Toán 12 kết nối này dùng để giảng dạy online hoặc trình chiếu. Giáo án tải về, chỉnh sửa được và không lỗi font. Thầy cô kéo xuống tham khảo
Nội dung giáo án
BÀI 7: HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN
NHIỆT LIỆT CHÀO MỪNG CÁC EM HỌC SINH THAM DỰ BUỔI HỌC HÔM NAY
KHỞI ĐỘNG
- GV tổ chức cho HS hệ thống lại kiến thức bài cũ bằng chuỗi bài tập trắc nghiệm.
HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC
1. HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN
HS hoàn thành Hoạt động 1: Hình thành khái niệm hệ trục tọa độ trong không gian
Trong không gian, xét ba trục có chung gốc
và đôi một vuông góc với nhau. Gọi
là các vectơ đơn vị trên các trục đó (H.2.35).
- Gọi tên các mặt phẳng tọa độ có trong Hình 2.35.
- Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?
Bài giải:
- Các mặt phẳng có trong hình vẽ là: Mặt phẳng
.
- Vì
,
và
cắt nhau tại
và nằm trong mặt phẳng
nên
.
Mà =>
,
=>
Chứng minh tương tự ta có:
Vậy ba mặt phẳng đôi một vuông góc với nhau.
lý thuyết:
Trong không gian, ba trục đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi
lần lượt là các vectơ đơn vị trên các trục
- Hệ ba trục như vậy được gọi là hệ trục toạ độ Descartes vuông góc , hay đơn giản là hệ toạ độ
- Điểm O được gọi là gốc toạ độ.
- Các mặt phẳng đôi một vuông góc với nhau được gọi là các mặt phẳng tọa độ.
Không gian với hệ toạ độ Oxyz còn được gọi là không gian Oxyz.
2. TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ CỦA VECTƠ TRONG KHÔNG GIAN
HS hoàn thành Hoạt động 2: Hình thành khái niệm tọa độ của điểm trong không gian.
Trong không gian , cho một điểm
không thuộc các mặt phẳng tọa độ. Vẽ hình hộp chữ nhật
có ba đỉnh
lần lượt thuộc các tia
(H.2.37).
- Hai vectơ
và
có bằng nhau hay không?
- Giải thích vì sao có thể viết
với
là các số thực.
Bài giải:
- Vì
là hình hộp chữ nhật nên theo quy tắc hình hộp ta có:
- Vì
là vectơ đơn vị trên trục
nên
với
là số thực.
Vì là vectơ đơn vị trên trục
nên
với
là số thực.
Vì là vectơ đơn vị trên trục
nên
với
là số thực.
Do đó, với
là số thực.
lý thuyết:
Trong không gian Oxyz cho một điểm M tuỳ ý. Bộ ba số (x ; y ; z) duy nhất sao cho được gọi là toạ độ của điểm M đối với hệ toạ độ Oxyz. Khi đó, ta viết
hoặc
, trong đó x là hoành độ, y là tung độ và z là cao độ của M.
HOẠT ĐỘNG LUYỆN TẬP
Bài 2.13 trang 64 sách toán 12 tập 1 kntt
Trong không gian , cho ba vectơ
đều khác
và có giá đôi một vuông góc. Những mệnh đề nào sau đây là đúng?
- Có thể lập một hệ tọa độ
có các trục tọa độ lần lượt song song với giá của các vectơ
.
- Có thể lập một hệ tọa độ
có các trục tọa độ lần lượt trùng với giá của các vectơ
.
- Có thể lập một hệ tọa độ
có các vectơ
lần lượt bằng các vectơ
.
- Có thể lập một hệ tọa độ
có các vectơ
lần lượt cùng phương các vectơ
.
Bài giải:
Tất cả mệnh đề trên đều đúng.
Bài 2.14 trang 64 sách toán 12 tập 1 kntt
Hãy mô tả hệ tọa độ trong căn phòng ở Hình 2.44 sao cho gốc
trùng với góc trên của căn phòng, khung tranh nằm trong mặt phẳng
và mặt trần nhà trùng với mặt phẳng
.
Bài giải:
Bài 2.15 trang 65 sách toán 12 tập 1 kntt
Trong không gian , xác định tọa độ của vectơ
trong mỗi trường hợp sau:
và
;
và
;
và
;
Bài giải:
HOẠT ĐỘNG VẬN DỤNG
Bài 2.17 trang 65 sách toán 12 tập 1 kntt
Trong không gian , cho hình hộp chữ nhật
có đỉnh
trùng với gốc
và các đỉnh
có tọa độ lần lượt là
(H.2.45). Xác định tọa độ của các đỉnh còn lại của hình hộp chữ nhật.
Bài giải:
trùng với gốc tọa độ nên
.
Vì thuộc tia
nên hai vectơ
và
cùng hướng. Do đó, tồn tại số thực
sao cho
. Mà
nên
.
Vì thuộc tia
nên hai vectơ
và
cùng hướng. Do đó, tồn tại số thực
sao cho
. Mà
nên
.
Bài 2.18 trang 65 sách toán 12 tập 1 kntt
Trong không gian , cho hình hộp
có
.
- Xác định tọa độ của điểm
.
- Xác định tọa độ các đỉnh còn lại của hình hộp.
Bài giải:
- Ta có:
Vì là hình hộp nên
là hình bình hành.
Do đó:
- Vì
là hình hộp nên:
HƯỚNG DẪN VỀ NHÀ
- Hệ thống lại kiến thức đã học, hoàn thành bài tập được giao
- Rèn luyện kĩ năng cho bản thân
- Xem trước nội dung bài 8 BIỂU THỨC TỌA ĐỘ CỦA CÁC PHÉP TOÁN VECTO.
BÀI HỌC KẾT THÚC, CẢM ƠN CÁC EM ĐÃ LẮNG NGHE
Giáo án powerpoint Toán 12 kết nối Bài 7: Hệ trục toạ độ trong không, Giáo án điện tử Bài 7: Hệ trục toạ độ trong không Toán 12 kết nối, Giáo án PPT Toán 12 KNTT Bài 7: Hệ trục toạ độ trong không
Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác