Giải câu 24 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 19

Câu 24: trang 19 sgk toán lớp 9 tập 2

Giải các hệ phương trình sau:

a. $\left\{\begin{matrix}2(x+y)+3(x-y)=4 & \\ (x+y)+2(x-y)=5 & \end{matrix}\right.$

b. $\left\{\begin{matrix}2(x-2)+3(1+y)=-2 & \\ 3(x-2)-2(1+y)=-3 & \end{matrix}\right.$


a. $\left\{\begin{matrix}2(x+y)+3(x-y)=4 & \\ (x+y)+2(x-y)=5 & \end{matrix}\right.$

Đặt $(x+y)=u; (x-y)=v$ta được:

$\left\{\begin{matrix}2u+3v=4 & \\ u+2v=5 & \end{matrix}\right.$

Nhân cả hai vế của phương trình thứ hai với 2 ta được hệ:

$\left\{\begin{matrix}2u+3v=4 & \\ 2u+4v=10 & \end{matrix}\right.$

Trừ phương trình thứ hai cho phương trình thứ nhất ta được:

$\left\{\begin{matrix}v=6 & \\ 2u+4v=10 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}v=6 & \\ 2u+4.6=10 & \end{matrix}\right.$

$\left\{\begin{matrix}v=6 & \\ 2u+24=10 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}v=6 & \\ 2u=-14 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}v=6 & \\ u=-7 & \end{matrix}\right.$

Vậy ta được hệ mới là: 

$\left\{\begin{matrix}x+y=-7 & \\ x-y=6 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}2x=-1 & \\ x-y=6 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}x=\frac{-1}{2} & \\ x-y=6 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\frac{-1}{2} & \\ \frac{-1}{2}-y=6 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}x=\frac{-1}{2} & \\ y=\frac{-1}{2}-6 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\frac{-1}{2} & \\ y=\frac{-13}{2} & \end{matrix}\right.$

Vậy hệ phương trình có một nghiệm duy nhất là $\left ( \frac{-1}{2};\frac{-13}{2} \right )$

b. $\left\{\begin{matrix}2(x-2)+3(1+y)=-2 & \\ 3(x-2)-2(1+y)=-3 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}2x-4+3+3y=-2 & \\ 3x-6-2-2y=-3 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}2x+3y-1=-2 & \\ 3x-2y-8=-3 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}2x+3y=-1 & \\ 3x-2y=5 & \end{matrix}\right.$

Nhân cả hai vế của phương trình thứ nhất với 3; nhân cả hai vế của phương trình thứ hai với 2, ta được hệ:

$\left\{\begin{matrix}6x+9y=-3 & \\ 6x-4y=10 & \end{matrix}\right.$

Trừ phương trình thứ nhất cho phương trình thứ hai ta được hệ:

$\Leftrightarrow \left\{\begin{matrix}13y=-13 & \\ 3x-2y=5 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}y=-1 & \\ 3x-2y=5 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}y=-1 & \\ 3x-2.(-1)=5 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}y=-1 & \\ 3x+2=5 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}y=-1 & \\ 3x=3 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}y=-1 & \\ x=1 & \end{matrix}\right.$

Vậy hệ phương trình có một nghiệm duy nhất là $(1;-1)$


Trắc nghiệm Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số (P2)
Từ khóa tìm kiếm Google: Giải câu 24 trang 19 sgk toán 9 tập 2, giải bài tập 24 trang 19 toán 9 tập 2, toán 9 tập 2 câu 24 trang 19, câu 24 bài 4 luyện tập sgk toán 9 tập 2

Bình luận

Giải bài tập những môn khác