Giải câu 22 bài: Luyện tập sgk Toán đại 9 tập 2 Trang 19

Câu 22: trang 19 sgk toán lớp 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a. $\left\{\begin{matrix}-5x+2y=4 & \\ 6x-3y=-7 & \end{matrix}\right.$

b. $\left\{\begin{matrix}2x-3y=11 & \\ -4x+6y=5 & \end{matrix}\right.$

c. $\left\{\begin{matrix}3x-2y=10 & \\ x-\frac{2}{3}y=3\frac{1}{3} & \end{matrix}\right.$


a. $\left\{\begin{matrix}-5x+2y=4 & \\ 6x-3y=-7 & \end{matrix}\right.$

Nhân cả hai vế của phương trình thứ nhất với 3, nhân cả hai vế của phương trình thứ hai với 2 ta được hệ:

$\left\{\begin{matrix}-15x+6y=12 (1) & \\ 12x-6y=-14 (2) & \end{matrix}\right.$

Cộng hai phương trình (1) với (2) ta được hệ:

$\left\{\begin{matrix}-3x=-2 & \\ 12x-6y=-14 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\frac{2}{3} & \\ 12x-6y=-14 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}x=\frac{2}{3} & \\ 12\frac{2}{3}-6y=-14 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\frac{2}{3} & \\ 8-6y=-14 & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}x=\frac{2}{3} & \\ 6y=22 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x=\frac{2}{3} & \\ y=\frac{22}{6}=\frac{11}{3} & \end{matrix}\right.$

Vậy hệ phương trinh có một nghiệm duy nhất là $\left ( \frac{2}{3};\frac{11}{3} \right )$

b. $\left\{\begin{matrix}2x-3y=11 & \\ -4x+6y=5 & \end{matrix}\right.$

Nhân cả hai vế của phương trình thứ nhất với -2 ta được hệ:

$\left\{\begin{matrix}-4x+6y=-22 & \\ -4x+6y=5 & \end{matrix}\right.$

Trừ phương trình thứ nhất cho phương trình thứ hai ta được hệ:

$\left\{\begin{matrix}0x+0y=-27 & \\ -4x+6y=5 & \end{matrix}\right.$

Ta thấy phương trình $0x+0y=-27$vô lí

Vậy hệ phương trình vô nghiệm.

c. $\left\{\begin{matrix}3x-2y=10 & \\ x-\frac{2}{3}y=3\frac{1}{3} & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}3x-2y=10 & \\ x-\frac{2}{3}y=\frac{10}{3} & \end{matrix}\right.$

Nhân cả hai vế của phương trình thứ hai với 3 ta được hệ:

$\left\{\begin{matrix}3x-2y=10 & \\ 3x-2y=10 & \end{matrix}\right.$

Trừ phương trình thứ nhất cho phương trình thứ hai ta được hệ:

$\left\{\begin{matrix}3x-2y=10 & \\ 3x-2y=10 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}0x-0y=0 & \\ 3x-2y=10 & \end{matrix}\right.$

Ta thấy phương trình $0x+0y=0$luôn đúng với mọi giá trị $x;y$

Vậy hệ phương trình có vô số nghiệm.


Trắc nghiệm Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số (P2)
Từ khóa tìm kiếm Google: Giải câu 22 trang 19 sgk toán 9 tập 2, giải bài tập 22 trang 19 toán 9 tập 2, toán 9 tập 2 câu 22 trang 19, câu 22 bài 4 luyện tập sgk toán 9 tập 2

Bình luận

Giải bài tập những môn khác