Giải bài 6.9 bài hàm số bậc hai

Bài tập 6.9. Xác định parabol $y = ax^{2}+bx+1$. trong mỗi trường hợp sau:

a. Đi qua hai điểm A(1; 0) và B(2; 4)

b. Đi qua điểm A(1; 0) và có trục đối xứng x =1

c. Có đỉnh I(1; 2)

d. Đi qua điểm A(-1; 1) và có tung độ đỉnh -0,25.


a. Thay tọa độ điểm A và B vào hàm số ta có hệ phương trình:

$\left\{\begin{matrix}0=a.1^{2}+b.1+1\\ 4=a.2^{2}+b.2+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}a=\frac{5}{2}\\b=\frac{-7}{2}\end{matrix}\right.$

Vậy parabol $y=\frac{5}{2}x^{2}+\frac{-7}{2}x+1$

b. đồ thị có trục đối xứng x = 1

=> $\frac{-b}{2a}=1$

thay tọa độ của A vào hàm số: $0=a.1^{2}+b.1+1$

Ta có hệ phương trình:

$\left\{\begin{matrix}0=a.1^{2}+b.1+1\\ 0=2.a +b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}a=1\\ b=-2\end{matrix}\right.$

c. Có đỉnh I(1; 2) =>  $\frac{-b}{2a}=1$

Thay tọa độ của I vào hàm số: $2=a.1^{2}+b.1+1$

Ta có hệ phương trình:

$\left\{\begin{matrix}2=a.1^{2}+b.1+1\\ 0=2.a +b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}a=-1\\ b=2\end{matrix}\right.$

d. Điểm đỉnh của parabol có tọa độ $I(\frac{-b}{2a};-0,25)$, thay tọa độ vào hàm số có:

$-0,25=a.\left ( \frac{-b}{2a} \right )^{2}+b.\left ( \frac{-b}{2a} \right )+1\\\Leftrightarrow -0,25=\frac{b^{2}}{4a}-\frac{b^{2}}{2a}+1\\\Leftrightarrow \frac{b^{2}}{a}=5\\\Leftrightarrow b^{2}=5a$

Thay tọa độ của A vào hàm số: $1=a.1^{2}-b.1+1$

Ta có hệ phương trình: 

$\left\{\begin{matrix}1=a.1^{2}-b.1+1\\ b^{2}=5a\end{matrix}\right.$

Suy ra: $b=a=5$

 


Trắc nghiệm Toán 10 kết nối bài 16 Hàm số bậc hai

Bình luận

Giải bài tập những môn khác