Đề thi Toán 12 cánh diều có kèm đáp án và ma trận

Đề thi Toán 12 cánh diều có đáp án và ma trận chi tiết. Bộ đề thi tổng hợp nhiều câu hỏi và dạng bài tập hay sẽ giúp các em ôn thi đạt kết quả cao trong học tập. Cấu trúc bộ đề bo gồm: trắc nghiệm, tự luận, cấu trúc điểm, bảng ma trận và bảng đặc tả. Hi vọng đây sẽ là tài liệu hữu ích giúp thầy cô và các em ôn tập

SỞ GD & ĐT ……………….

Chữ kí GT1: ...........................

TRƯNG THPT……………….

Chữ kí GT2: ...........................

 

ĐỀ KIỂM TRA GIỮA KÌ 1

TOÁN 12 – CÁNH DIỀU

NĂM HỌC: 2023 - 2024

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Họ và tên: ……………………………………  Lớp:  ………………..

Số báo danh: …………………………….……Phòng KT:…………..

Mã phách

 

"

 

Điểm bằng số

 

 

 

Điểm bằng chữ

Chữ ký của GK1

Chữ ký của GK2

Mã phách

  1. PHẦN TRẮC NGHIỆM (7 điểm)

Khoanh tròn vào chữ cái đứng trước câu trả lời đúng:

Câu 1. Hàm số  đồng biến trên khoảng nào sau đây?

A. .

B. Đồng biến trên ℝ.

C.

D. .

Câu 2. Cho hình hộp chữ nhật . Vectơ đối của vectơ  là:

A. .

B..

C..

D. .

Câu 3. Đường tiệm cận đứng của đồ thị hàm số  là:

A. .

B. .

C. .

D. .

Câu 4. Đồ thị sau là của hàm số nào?

A. .

B..

C. .

D. .

Câu 5. Trong không gian với hệ trục toạ độ , cho hai điểm  và . Toạ độ vectơ  là:

A.  

B. .

C.  

D.

Câu 6. Hàm số  đạt giá trị nhỏ nhất trên đoạn [0;2] tại điểm.

A.

B.

C.

D.

Câu 7. Cho hàm số có bảng biến thiên như hình vẽ.

Hàm số đạt cực tiểu tại điểm

A.

B.

C.

D.

Câu 8. Đồ thị hàm số có điểm cực tiểu . Tính    

A.

B. 

C.

D.

Câu 9. Cho các khẳng định sau:

(1) Nếu  là hình hộp chữ nhật thì

(2) Với ba điểm  trong không gian, ta có:

(3) Nếu  là hình bình hành thì

(4) Với ba điểm  trong không gian, ta có:

Trong các khẳng định trên:

A. (1) và (3) đúng.

B. (1) đúng.

C. (1) và (2) đúng.

D. (2) và (3) đúng.

 

 

Câu 10. Đồ thị hàm số  có bao nhiêu đường tiệm cận?

A. .

B. .

C. .

D. .

Câu 11. Cho hàm số  xác định trên ℝ và có đồ thị hàm số  như hình vẽ

Hàm số  đồng biến trên khoảng nào dưới đây?

A.

B.

C.

D.

Câu 12. Xác định  để hàm số  có đồ thị như hình vẽ dưới đây.

Chọn đáp án đúng.

A. .

B..

C. .

D. .

Câu 13. Bảng biến thiên dưới đây là của hàm số nào?

A. .

B..

C. .

D. .

Câu 14. Đồ thị hàm số nào sau đây không có tiệm cận ngang?

A. .

B. .

C.  .

D. .

Câu 15. Trong không gian với hệ trục toạ độ , cho . Trên mặt phẳng   điểm nào dưới đây cách đều ba điểm

A.  

B. .

C.  

D.

Câu 16. Cho hàm số . Số giá trị nguyên của m để hàm số đồng biến trên  là:

A.

B. 4

C.

D.

Câu 17.  Hàm số  có tiệm cận ngang là:

A.

B.

C.

D.

 

D. Hàm số đồng biến trên mỗi khoảng  và

Câu 18. Cho hàm số có bảng biến thiên như hình vẽ.

Hàm số đạt cực đại tại điểm

A.

B.

C.

D.

Câu 19. Gọi  lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Tính

A.

B. 0

C.

D.

Câu 20. Cho hàm số  xác định, liên tục trên ℝ và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số  để phương trình  có 4 nghiệm phân biệt?

A.

B.

C.

D.

Câu 21. Cho hàm số  có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

A.

B.

C.

D.

Câu 22. Cho hàm số . Chọn khẳng định đúng.

A. Hàm số nghịch biến trên ℝ.

B. Hàm số có một điểm cực trị.

C. Hàm số có hai điểm cực trị.

D. Hàm số đồng biến trên ℝ.

 

Câu 23. Hàm số nào sau đây có bảng biến thiên như hình vẽ?

A.

B.

C.

D.

Câu 24. Cho hàm số   có đạo hàm  . Điểm cực đại của hàm số   là:

A.

B.

C.

D.

Câu 25. Tìm giá trị lớn nhất của hàm số  trên đoạn

A.

B.

C.

D.

Câu 26. Cho hình lập phương . Tính góc giữa hai véc tơ

A.

B.

C.

D. 

 

Câu 27. Cho tứ diện . Lấy các điểm  lần lượt thuộc  sao cho . Tìm  để bốn điểm  cùng nằm trên một mặt phẳng.

A.

B.

C.

D.

Câu 28. Biết rằng hàm số  có hai điểm cực trị . Giá trị của biểu thức  bằng:

A. .

B.

C. .

D. .

Câu 29. Cho hàm số . Khẳng định nào sau đây là khẳng định đúng?

A. Hàm số đồng biến trên ℝ

B. Hàm số nghịch biến trên khoảng

C. Hàm số nghịch biến trên

D. Hàm số đồng biến trên mỗi khoảng  và

Câu 30. Trong không gian với hệ toạ độ , cho ba điểm . Xét các khẳng định sau:

(1) .

(2) Điểm  thuộc đoạn

(3)  là một tam giác.

(4)  thẳng hàng.

Trong 4 khẳng định trên có bao nhiêu khẳng định đúng?

A. .

B. 2.

C. 3.

D. .

Câu 31. Một chất điểm chuyển động có phương trình chuyển động là , với  là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và  là quãng đường vật đi được trong thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vân tốc  của chất điểm đạt giá trị lớn nhất bằng

A. .

B..

C. .

D. .

Câu 32. Tiệm cận xiên của đồ thị hàm số  là:

A.

B.

C.

D.

Câu 33. Trong không gian  , cho 4 điểm  và . Cosin góc giữa  là:

A.

B.

C.

D. 

Câu 34. Hệ thức liên hệ giữa giá trị cực đại  và giá trị cực tiểu  của hàm số  là:

A.

B.

C.

D.

Câu 35. Một bức tường cao nằm song song với toà nhà và cách toà nhà . Người ta muốn chế tạo một chiếc thang bắc từ mặt đất bên ngoài bức tường, gác qua bức tường và chạm vào toà nhà (hình vẽ). Hỏi chiều dài tối thiểu của thang bằng bao nhiêu mét?

A.

B.

C.

D. 

PHẦN TỰ LUẬN (3 điểm)

Câu 1. (1 điểm) Khảo sát sự biến thiên của đồ thị hàm số

Câu 2. (1 điểm) Cho hàm số

  1. a) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn
  2. b) Tìm tập hợp các giá trị của tham số để phương trình có ba nghiệm phân biêt.

Câu 3. (1 điểm)

Cho hình chóp đều  có đáy hình vuông tâm  và toạ độ của

  1. Chứng minh .
  2. b) Tính cosin góc giữa .

%

 

BÀI LÀM:

……………………………………………………………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

 

TRƯỜNG THPT ........

HƯỚNG DẪN CHẤM KIỂM TRA GIỮA KÌ 1 (2023 – 2024)

MÔN: TOÁN 12 – CÁNH DIỀU

  1. A. PHẦN TRẮC NGHIỆM: (7,0 điểm)

Mỗi câu trả lời đúng được 0,2 điểm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

B

D

A

B

A

C

B

C

B

B

D

C

B

A

C

A

D

B

B

B

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 

A

D

A

A

D

C

B

C

C

B

A

D

C

D

B

 

 

  1. PHẦN TỰ LUẬN: (3,0 điểm)

Câu

Nội dung đáp án

Biểu điểm

Câu 1

(1 điểm)

1) Tập xác định: ℝ.

2) Sự biến thiên

Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận

  Ta viết hàm số đã cho dưới dạng: .

   , .

    , .

Do đó, đường thẳng  là tiệm cận đứng của đồ thị hàm số.

Do đó đường thẳng  là đường tiệm cận xiên của đồ thị hàm số.

 ;

  hoặc

 Bảng biến thiên:

Hàm số đồng biến trên mỗi khoảng  và .

Hàm số nghịch biến trên mỗi khoảng  và

Hàm số đạt cực đại tại .

Hàm số đạt cực tiểu tại .

 

0,25

0,25

Câu 2

(1 điểm)

 

a) Tập xác định : ℝ

Khi đó trên khoảng   hoặc .

 

Vậy  tại ;  tại .

 

 

 

 

0,5

 

b)  Ta có       

 Bảng biến thiên:

Để phương trình   có 3 nghiệm phân biệt thì đường thẳng  cắt đồ thị hàm số   tại 3 điểm phân biệt

 .

Vậy phương trình  có ba nghiệm phân biệt khi và chỉ khi .

 

0,25

 

 

 

 

 

 

0,25

Câu 3

(1 điểm)

a)  là tâm của hình vuông , ta có:

Theo quy tắc hình bình hành:

Từ  và , ta có:

 

 

 

0,25

 0,25

 

 

Vì  song song với  nên

Ta có

Vậy .

0.25

 

 

0.25

 

TRƯỜNG THPT .........

MA TRẬN ĐỀ KIỂM TRA GIỮA KÌ 1 (2023 – 2024)

MÔN: TOÁN 12 – CÁNH DIỀU

CHỦ ĐỀ

 

NỘI DUNG

MỨC ĐỘ

Tổng số câu

 

Điểm số

Nhận biết

Thông hiểu

Vận dụng

VD cao

TN

TL

TN

TL

TN

TL

TN

TL

TN

TL

ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ.

1. Tính đơn điệu của hàm số.

5

 

3

1

3

1

1

 

12

2

1,6

2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

 

 

3

1

2

 

 

 

6

1

3,2

3. Đường tiệm cận của đồ thị hàm số.

4

 

2

 

 

 

 

 

4

2

3

4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

4

 

 

 

 

 

 

 

4

 

2,2

TOẠ ĐỘ CỦA VECTƠ TRONG KHÔNG GIAN.

1. Vectơ và các phép toán vectơ trong không gian

2

 

1

1

1

 

1

 

4

1

 

2. Toạ độ của vectơ

 

 

2

 

1

1

 

 

3

1

 

 

Tổng số câu TN/TL

15

 

11

3

7

2

2

 

35

5

 

 

Điểm số

3

 

2,2

2

1,4

1

0,4

 

7

3

10

 

Tổng số điểm

3 điểm

 30%

4,2 điểm

42 %

   2,4 điểm

 24 %

0,4 điểm

 4 %

10 điểm

100 %

10 điểm

 

TRƯỜNG THPT .........

BẢN ĐẶC TẢ KĨ THUẬT ĐỀ KIỂM TRA GIỮA KÌ 1 (2023 – 2024)

MÔN: TOÁN 12 – CÁNH DIỀU

 

 

Nội dung

 

 

Mức độ

 

 

Yêu cầu cần đạt

Số ý TL/

Số câu hỏi TN

Câu hỏi

TL

(số ý)

TN

(số câu)

TL

(số ý)

TN

(số câu)

CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

 

27

3

 

1.  Tính đơn điệu của hàm số.

Nhận biết

- Đọc được khoảng đồng biến, nghịch biến trên bảng biến thiên.

- Đọc được các điểm cực đại, cực tiểu trên bảng biến thiên.

 

5

 

C1;C7;

C17;C18;

C22

Thông hiểu

- Xác định được khoảng đồng biến, nghịch biến của đồ thị hàm số.

- Tìm được cực đại, cực tiểu.

1

3

C1a

 

C28;

C29;C34

Vận dụng

- Giải được các bài tập, bài toán liên quan về tính đơn điệu của hàm số.

1

3

C2b

C8;C16;

C24

 

Vận dụng cao

- Giải được các bài toán, bài tập nâng cao liên quan đến tính đơn điệu của hàm số.

 

1

 

C20

2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Thông hiểu

- Tìm được giá trị lớn nhất, giá trị nhỏ nhất của đồ thị hàm số.

1

3

C2a

C6;

C19;C25

Vận dụng

- Giải được các bài tập, bài toán thực tế liên quan.

 

2

 

C31;C35

Vận dụng cao

- Giải được các bài tập, bài toán nâng cao liên quan.

 

 

 

 

3. Đường tiệm cận của đồ thị hàm số.

Nhận biết

- Đọc được các đường tiệm cận của đồ thị qua bảng biến thiên, đồ thị hàm số.

 

4

 

C3;C10;

C14;C23

Thông hiểu

- Tìm được các đường tiệm cận của đồ thị hàm số.

- Biểu diễn được các đường tiệm cận trên đồ thị.

 

2

 

 

C12;C32

 

Vận dụng

- Giải các bài tập, bài toán liên quan.

 

 

 

 

4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Nhận biết

Nhận biết được đồ thị của hàm số.

 

4

 

C4;C11;

C13;C21

Thông hiểu

- Xác định được đồ thị của hàm số.

- Vẽ được đồ thị hàm số trên trục toạ độ.

 

 

 

 

Vận dụng

- Giải được các bài tập, bài toán liên quan.

 

 

 

 

Vận dụng cao

- Giải được các bài tập, bài toán nâng cao liên quan.

 

 

 

 

CHƯƠNG II. TOẠ ĐỘ CỦA VECTƠ TRONG KHÔNG GIAN.

0

8

2

 

1. Vectơ và các phép toán vectơ trong không gian.

Nhận biết

- Nhận biết được khái niệm vectơ trong không gian.

 

2

 

C2;C9

Thông hiểu

-     Biểu diễn được các vectơ.

1

 

C3a

 

Vận dụng

- Giải được các bài tập, bài toán liên quan đến vectơ trong không gian.

 

1

 

C26

2. Toạ độ của vectơ

Nhận biết

- Nhận biết được toạ độ của vectơ.

 

1

 

C27

Thông hiểu

- Thực hiện được các phép tính cộng, trừ vectơ.

 

2

 

C15;C30

Vận dụng

- Giải được các bài tập, bài toán liên quan đến toạ độ vectơ trong không gian.

1

1

C3b

C33

Vận dụng cao

- Giải được các bài tập, bài toán nâng cao liên quan đến toạ độ vectơ trong không gian.

 

 

 

 

 

Từ khóa tìm kiếm:

Ma trận đề thi Toán 12 cánh diều có đáp án. đề thi Toán 12 cánh diều có đáp án. đề kiểm tra Toán 12 cánh diều có đáp án

Bình luận

Giải bài tập những môn khác