Giải toán VNEN 9 bài 5: Tính chất của hai tiếp tuyến cắt nhau
Giải bài 5: Tính chất của hai tiếp tuyến cắt nhau trang 109. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học. Cách làm chi tiết, dễ hiểu, Hi vọng các em học sinh nắm tốt kiến thức bài học.
A. HOẠT ĐỘNG KHỞI ĐỘNG
1. Cho hình 107 với AB, AC là hai tiếp tuyến của đường tròn (O) (B, C là tiếp điểm).
Chứng tỏ rằng:
a) AB = AC.
b) AO là phân giác của $\widehat{BAC}$.
c) OA là phân giác của $\widehat{BOC}$.
Gợi ý: Điền vào chỗ chấm (...)
Xét (O), do AB, AC là hai tiếp tuyến của đường tròn (O) (giả thiết) nên AB $\perp $ OB tại B; AC $\perp $ OC tại C (tính chất tiếp tuyến).
Xét hai tam giác vuông OBA và OCA, có:
+........................................
+........................................
+.........................................
nên $\Delta $OBA = $\Delta $OCA (.......................) $\Rightarrow $ AB = AC (hai cạnh tương ứng), $\widehat{BAO}$ =..................... ; $\widehat{BOA}$ =.....................
Vậy..................................................................................
Trả lời:
Xét (O), do AB, AC là hai tiếp tuyến của đường tròn (O) (giả thiết) nên AB $\perp $ OB tại B; AC $\perp $ OC tại C (tính chất tiếp tuyến).
Xét hai tam giác vuông OBA và OCA, có:
+ OB = OC
+ OA chung
+ $\widehat{OBA}$ = $\widehat{OCA}$ = $90^{\circ}$
nên $\Delta $OBA = $\Delta $OCA () $\Rightarrow $ AB = AC (hai cạnh tương ứng), $\widehat{BAO}$ = $\widehat{CAO}$ ; $\widehat{BOA}$ = $\widehat{COA}$
Vậy AO là phân giác của $\widehat{BAC}$ và OA là phân giác của $\widehat{BOC}$.
B. HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC
1. a) Đọc kĩ nội dung sau
Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì
- Điểm đó cách đều hai điểm
- Tia kẻ từ điểm đó qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.
b) Luyện tập
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm, hình 108).
i) Chứng minh OA $\perp $ BC.
ii) Vẽ đường kính CD. Chứng minh BD song song với AO.
Trả lời:
i) Theo tính chất hai tiếp tuyến cắt nhau của một đường tròn ta có: AB = AC
Ta có: OB = OC, AB = AC $\Rightarrow $ OA là đường trung trực của BC hay OA $\perp $ BC (đpcm).
ii) Vì ba điểm D, B, C cùng thuộc đường tròn nên tam giác DBC nội tiếp tam giác
Mặt khác ta có DC là đường kình nên tam giác DBC là tam giác vuông: $\widehat{DBC}$ = $90^{\circ}$ hay DB $\perp $ BC
Ta có: OA $\perp $ BC và DB $\perp $ BC $\Rightarrow $ OA // DB (đpcm).
2.a) Cho tam giác ABC. Gọi I là giao của các đường phân giác các góc trong của tam giác; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ I đến các cạnh BC, AC, AB (hình 109). Chứng minh ba điểm D, E, F cùng nằm trên đường tròn tâm I.
Trả lời:
Xét $\Delta $AIF và $\Delta $AIE, có:
AI chung, $\widehat{IAF}$ = $\widehat{IAE}$ (do AI là phân giác góc A), $\widehat{AFI}$ = $\widehat{AEI}$ = $90^{\circ}$
$\Rightarrow $ $\Delta $AIF = $\Delta $AIE (g.c.g)
$\Rightarrow $ IE = IF
Tương tự ta chứng minh được IF = ID, ID = IF
Suy ra ID = IE = IF hay D, E, F cùng nằm trên đường tròn tâm I (đpcm).
b) Đọc kĩ nội dung sau
- Đường tròn tiếp xúc với 3 cạnh của một tam giác gọi là đương tròn nội tiếp tam giác, còn tam giác được gọi là tam giác ngoại tiếp đường tròn.
- Tâm của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác các góc trong tam giác.
c) Cho góc xOy khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc xOy nằm trên đường nào? Giải thích vì sao?
Trả lời:
Đường tròn tiếp xúc với hai cạnh Ox, Oy của góc xOy tức là Ox, Oy là tiếp tiếp của các đường tròn đó
Ta có tính chất hai tiếp tuyến cắt nhau của đường tròn như sau: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.
Vậy các đường tròn tiếp xúc với hai cạnh của góc xOy nằm trên đường phân giác góc xOy.
Giải bài tập những môn khác
Môn học lớp 9 KNTT
5 phút giải toán 9 KNTT
5 phút soạn bài văn 9 KNTT
Văn mẫu 9 kết nối tri thức
5 phút giải KHTN 9 KNTT
5 phút giải lịch sử 9 KNTT
5 phút giải địa lí 9 KNTT
5 phút giải hướng nghiệp 9 KNTT
5 phút giải lắp mạng điện 9 KNTT
5 phút giải trồng trọt 9 KNTT
5 phút giải CN thực phẩm 9 KNTT
5 phút giải tin học 9 KNTT
5 phút giải GDCD 9 KNTT
5 phút giải HĐTN 9 KNTT
Môn học lớp 9 CTST
5 phút giải toán 9 CTST
5 phút soạn bài văn 9 CTST
Văn mẫu 9 chân trời sáng tạo
5 phút giải KHTN 9 CTST
5 phút giải lịch sử 9 CTST
5 phút giải địa lí 9 CTST
5 phút giải hướng nghiệp 9 CTST
5 phút giải lắp mạng điện 9 CTST
5 phút giải cắt may 9 CTST
5 phút giải nông nghiệp 9 CTST
5 phút giải tin học 9 CTST
5 phút giải GDCD 9 CTST
5 phút giải HĐTN 9 bản 1 CTST
5 phút giải HĐTN 9 bản 2 CTST
Môn học lớp 9 cánh diều
5 phút giải toán 9 CD
5 phút soạn bài văn 9 CD
Văn mẫu 9 cánh diều
5 phút giải KHTN 9 CD
5 phút giải lịch sử 9 CD
5 phút giải địa lí 9 CD
5 phút giải hướng nghiệp 9 CD
5 phút giải lắp mạng điện 9 CD
5 phút giải trồng trọt 9 CD
5 phút giải CN thực phẩm 9 CD
5 phút giải tin học 9 CD
5 phút giải GDCD 9 CD
5 phút giải HĐTN 9 CD
Trắc nghiệm 9 Kết nối tri thức
Trắc nghiệm 9 Chân trời sáng tạo
Trắc nghiệm 9 Cánh diều
Tài liệu lớp 9
Văn mẫu lớp 9
Đề thi lên 10 Toán
Đề thi môn Hóa 9
Đề thi môn Địa lớp 9
Đề thi môn vật lí 9
Tập bản đồ địa lí 9
Ôn toán 9 lên 10
Ôn Ngữ văn 9 lên 10
Ôn Tiếng Anh 9 lên 10
Đề thi lên 10 chuyên Toán
Chuyên đề ôn tập Hóa 9
Chuyên đề ôn tập Sử lớp 9
Chuyên đề toán 9
Chuyên đề Địa Lý 9
Phát triển năng lực toán 9 tập 1
Bài tập phát triển năng lực toán 9
Bình luận