Giải Câu 6 Bài 5: Khoảng cách

Câu 6: Trang 119 - SGK Hình học 11

Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).


Giải Câu 6 Bài 5: Khoảng cách

Gọi I là trung điểm AB, J là trung điểm CD.

Qua \(I\) kẻ đường thẳng \(d // CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \frac{CD}{2}\) (\(I\) là trung điểm của \(EF\)). \(IJ\) vuông góc với \(CD\) \(\Rightarrow IJ\) vuông góc với \(EF\), mà \(IJ\) cũng vuông góc với \(AB\Rightarrow IJ \bot (AEBF)\).

Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình

Do đó \(CE\) và \(DF\) cùng song song với \(IJ\) 

Vì $IJ \perp (AEBF)-cmt$

Suy ra \(CE\) và \(DF\) cùng vuông góc với mp \((AEBF)\) 

 \(\Rightarrow DF ⊥ AF, CE ⊥ IE\).

\(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)

Xét \(∆DFA\) và \(∆CEB\) có:

  +) \(\widehat E = \widehat F( = {90^0})\) 

  +) \(AF=BE\)

  +) \(DF=CE\)

\(\Rightarrow ∆DFA=∆CEB(c.g.c)\)

\(\Rightarrow AD = BC\). 

Chứng minh tương tự ta được \(BD = AC\).


Trắc nghiệm Hình học 11:Bài 5: Khoảng cách
Từ khóa tìm kiếm Google: giải câu 6 trang 119 sgk hình học 11, giải bài tập 6 trang 119 hình học 11, hình học 11 câu 6 trang 119, Câu 6 Bài Khoảng cách sgk hình học 11

Bình luận

Giải bài tập những môn khác