Giải câu 1 bài: Phương trình mặt phẳng

Câu 1: Trang 80 - sgk hình học 12

Viết phương trình mặt phẳng:

a) Đi qua điểm M(1; -2; 4) và nhận $\overrightarrow{n}=(2;3;5)$ làm vectơ pháp tuyến.

b) Đi qua điểm A(0 ; -1 ; 2) và song song với giá của các vectơ $\overrightarrow{u}=(3;2;1)$ và $\overrightarrow{u}=(-3;0;1)$

c) Đi qua ba điểm A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1).


a) Phương trình mặt phẳng đi qua điểm M(1; -2; 4) và nhận $\overrightarrow{n}=(2;3;5)$ làm vectơ pháp tuyến có dạng:

$2(x - 1) + 3(x +2) + 5(z - 4) = 0 <=> (P) : 2x + 3y + 5z -16 = 0$

b) Ta có: $\overrightarrow{n}=[\overrightarrow{u},\overrightarrow{v}]=(2;-6;6)$

=> Phương trình mặt phẳng đi qua điểm A(0 ; -1 ; 2) và nhận $\overrightarrow{n}=(2;-6;6)$ làm vectơ pháp tuyến có dạng:

$2(x - 0) - 6(y + 1) + 6(z - 2) = 0  <=> (Q) :x - 3y + 3z - 9 = 0$

c) Gọi (T) là mặt phẳng qua A, B, C.

=> $\overrightarrow{AB},\overrightarrow{AC}$ là vectơ chỉ phương của (T)

=> $\overrightarrow{n}=[\overrightarrow{AB}.\overrightarrow{AC}]=(2;3;6)$

=> phương trình mặt phẳng (T) có dạng: $2x + 3y + 6z + 6 = 0$.


Trắc nghiệm hình học 12 bài 2: Phương trình mặt phẳng
Từ khóa tìm kiếm Google: Lời giải câu 1 bài Phương trình mặt phẳng, Cách giải câu 1 bài Phương trình mặt phẳng, hướng dẫn giải câu 1 bài Phương trình mặt phẳng, Gợi ý giải câu 1 bài Phương trình mặt phẳng - hình học 12

Bình luận

Giải bài tập những môn khác