Bộ câu hỏi ôn tập Toán 12 kết nối tri thức mới
Dưới đây là bộ câu hỏi ôn tập chương trình mới môn Toán 12 kết nối tri thức. Nhiều dạng bài tập, câu hỏi hay, tổng hợp kiến thức trọng tâm của bài học giúp học sinh ôn tập, nắm chắc kiến thức, đạt thành tích tốt trong học tập. Mời thầy cô và các em kéo xuống tham khảo.
CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ
BÀI 1: TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ
(24 câu)
1. NHẬN BIẾT (7 CÂU)
Câu 1: Cho hàm số có đồ thị như hình vẽ.
Hãy xác định khoảng đồng biến, nghịch biến của đồ thị hàm số.
Trả lời:
Quan sát đồ thị ta thấy:
- Hàm số đồng biến trên các khoảng và
.
- Hàm số nghịch biến trên các khoảng .
Câu 2: Cho hàm số có đồ thị như hình vẽ.
Hãy xác định khoảng biến thiên và cực trị của hàm số.
Trả lời:
Quan sát đồ thị ta thấy:
- Hàm số đồng biến trên các khoảng và
.
- Hàm số nghịch biến trên các khoảng và
.
- Hàm số đạt cực đại tại và đạt cực tiểu tại
.
Câu 3: Cho hàm số có đồ thị như hình vẽ.
Hãy xác định các điểm cực trị, giá trị cực trị của hàm số.
Trả lời:
Quan sát đồ thị ta thấy:
- Hàm số đạt cực đại tại và đạt cực tiểu tại
.
Câu 4. Cho hàm số xác định, liên tục trên
và có bảng biến thiên:
Hãy xác định khoảng biến thiên, điểm cực trị và giá trị cực trị của hàm số.
Trả lời:
Dựa vào bảng biến thiên, ta có:
- Hàm số đồng biến trên các khoảng và
.
- Hàm số nghịch biến trên các khoảng và
.
- Hàm số đạt cực đại tại và đạt cực tiểu tại
.
Câu 5: Xét tính đơn điệu của hàm số .
Trả lời:
- Tập xác định của hàm số là: .
- Ta có: .
Vậy hàm số nghịch biến trên các khoảng và
.
Câu 6: Cho hàm số . Hàm số đồng biến hoặc nghịch biến trên khoảng nào?
Trả lời:
- Tập xác định của hàm số là: .
- Ta có: .
Vậy hàm số đồng biến trên các khoảng và
.
Câu 7: Cho hàm số có đồ thị như hình vẽ. Hàm số đã cho có bao nhiêu điểm cực trị? Tìm cực trị và giá trị cực trị.
Trả lời:
Quan sát đồ thị ta thấy:
- Hàm số có 1 điểm cực trị.
- Hàm số đạt cực tiểu tại ; giá trị cực tiểu
.
2. THÔNG HIỂU (8 CÂU)
Câu 1: Xét tính đơn điệu của hàm số .
Trả lời:
Tập xác định:
- Ta có:
hoặc
.
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng và
; nghịch biến trên khoảng
.
Câu 2: Xét tính đơn điệu của hàm số .
Trả lời:
Tập xác định:
- Ta có:
.
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng ; nghịch biến trên khoảng
.
Câu 2: Xét tính đơn điệu của hàm số .
Trả lời:
Tập xác định:
Ta có:
hoặc
.
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng và
; nghịch biến trên khoảng
và
.
Câu 4: Tìm các điểm cực trị, giá trị cực trị của hàm số .
Trả lời:
Tập xác định:
- Ta có:
.
Bảng biến thiên:
Vậy hàm số đạt cực đại tại ; giá trị cực đại
.
Câu 5. Cho hàm số có đạo hàm
. Tìm số điểm cực đại của hàm số.
Trả lời:
Tập xác định:
- Ta có:
Bảng biến thiên:
Từ bảng biến thiên, ta thấy hàm số đạt cực đại tại .
Vậy hàm số đã cho có 1 điểm cực đại.
Câu 6: Cho hàm số xác định, liên tục trên
và có bảng biến thiên:
Hàm số có bao nhiêu điểm cực trị?
Trả lời:
Tập xác định:
Quan sát bảng biến thiên, ta thấy:
Hàm số có hai điểm cực trị là
và
.
Với ,
Với ,
Đồ thị
nhận trục
là trục đối xứng.
Ta có bảng biến thiên của hàm số :
Vậy hàm số có 5 điểm cực trị.
Câu 7: Tìm các hệ số để đồ thị hàm số
có đạt cực trị bằng 0 tại điểm
và đồ thị của hàm số đi qua điểm
.
Trả lời:
Tập xác định:
- Ta có:
Vì đồ thị hàm số đạt cực trị bằng 0 tại điểm và đi qua điểm
nên:
.
Vậy hàm số thoả mãn điều kiện bài toán.
Câu 8: Cho hàm số có đồ thị
như hình vẽ sau:
Xét tính đơn điệu của hàm số.
Trả lời:
Quan sát đồ thị hàm số, ta thấy:
- Khi ,
, suy ra hàm số đồng biến trên khoảng
.
- Khi ,
, suy ra hàm số nghịch biến trên khoảng
.
3. VẬN DỤNG (7 câu)
Câu 1: Tìm để đồ thị hàm số
đồng biến trên tập xác định.
Trả lời:
Tập xác định:
- Ta có:
Hàm số đồng biến trên
khi và chỉ khi:
Vậy với thì hàm số
đồng biến trên
.
Câu 2: Có bao nhiêu giá trị nguyên của để hàm số
nghịch biến trên khoảng
.
Trả lời:
Tập xác định:
- Ta có:
Hàm số nghịch biến trên khoảng khi và chỉ khi:
.
Vì nên
.
có 6 giá trị nguyên của
thoả mãn.
Vậy thì hàm số đã cho nghịch biến trên khoảng
.
Câu 3: Tìm để đồ thị hàm số
nghịch biến trên một đoạn có độ dài bằng 1.
Trả lời:
Tập xác định:
- Ta có:
Hàm số nghịch biến trên một đoạn có độ dài bằng 1 khi và chỉ khi phương trình có hai nghiệm phân biệt
và
với mọi
Do nên
với mọi
.
- Ta có: hoặc
.
Khi đó:
Vậy thì hàm số đã cho thoả mãn yêu cầu bài toán.
Câu 4: Tìm để hàm số
đạt cực trị tại
sao cho
.
Trả lời:
Tập xác định:
- Ta có:
Hàm số đạt cực trị tại khi và chỉ khi phương trình
có hai nghiệm phân biệt.
Khi đó:
Vì là hai nghiệm phân biệt của phương trình
, theo Vi – et, ta có:
Ta có:
Từ , suy ra
.
Vậy với thì hàm số đã cho thoả mãn điều kiện bài toán.
Câu 5: Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số .
Trả lời:
Tập xác định:
- Ta có:
hoặc
.
Gọi và
là hai điểm cực trị của đồ thị hàm số.
Khi đó, đường thẳng đi qua hai điểm cực trị là đường thẳng có phương trình là:
.
Vậy phương trình đường thẳng cần tìm là: .
Câu 6: Cho hàm số có hai điểm cực trị là
và
. Tính diện tích tam giác
với
là gốc toạ độ.
Trả lời:
Tập xác định:
- Ta có:;
hoặc
.
Gọi và
là hai điểm cực trị của đồ thị hàm số.
Tam giác có
và
.
Ta có:
;
;
.
.
Vậy diện tích tam giác là 5.
Câu 7: Cho hàm số có đạo hàm trên
và
. Xét tính đơn điệu của hàm số
.
Trả lời:
Tập xác định:
Ta có:
;
Bảng xét dấu của :
Vậy hàm số đồng biến trên các khoảng
và
; nghịch biến trên các khoảng
và
.
4. VẬN DỤNG CAO (2 câu)
Câu 1:Tìm để đồ thị hàm số
có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có diện tích bằng 4.
Trả lời:
Tập xác định:
- Ta có:
Hàm số có 3 cực trị khi và chỉ khi phương trình có 3 nghiệm phân biệt.
Phương trình có 3 nghiệm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 0.
Khi đó:
Gọi là 3 điểm cực trị của hàm số.
Ta có: .
Vì cân tại
.
Gọi là trung điểm của
.
Ta có: ;
.
Khi đó:
Vậy với thì hàm số đã cho có có ba điểm cực trị lập thành một tam giác có diện tích bằng 4.
Câu 2: Cho hàm số có đồ thị đạo hàm
là đồ thị như hình vẽ. Xét tính đơn điệu của hàm số hàm số
.
Trả lời:
Tập xác định:
Quan sát đồ thị hàm số, ta thấy là cực trị của hàm số.
Khi đó ;
Vì ;
.
Ta có:
;
Bảng xét dấu của

Vậy hàm số đồng biến trên các khoảng
và
; nghịch biến trên các khoảng
và
.
Thêm kiến thức môn học
Giải bài tập những môn khác
Môn học lớp 12 KNTT
5 phút giải toán 12 KNTT
5 phút soạn bài văn 12 KNTT
Văn mẫu 12 KNTT
5 phút giải vật lí 12 KNTT
5 phút giải hoá học 12 KNTT
5 phút giải sinh học 12 KNTT
5 phút giải KTPL 12 KNTT
5 phút giải lịch sử 12 KNTT
5 phút giải địa lí 12 KNTT
5 phút giải CN lâm nghiệp 12 KNTT
5 phút giải CN điện - điện tử 12 KNTT
5 phút giải THUD12 KNTT
5 phút giải KHMT12 KNTT
5 phút giải HĐTN 12 KNTT
5 phút giải ANQP 12 KNTT
Môn học lớp 12 CTST
5 phút giải toán 12 CTST
5 phút soạn bài văn 12 CTST
Văn mẫu 12 CTST
5 phút giải vật lí 12 CTST
5 phút giải hoá học 12 CTST
5 phút giải sinh học 12 CTST
5 phút giải KTPL 12 CTST
5 phút giải lịch sử 12 CTST
5 phút giải địa lí 12 CTST
5 phút giải THUD 12 CTST
5 phút giải KHMT 12 CTST
5 phút giải HĐTN 12 bản 1 CTST
5 phút giải HĐTN 12 bản 2 CTST
Môn học lớp 12 cánh diều
5 phút giải toán 12 CD
5 phút soạn bài văn 12 CD
Văn mẫu 12 CD
5 phút giải vật lí 12 CD
5 phút giải hoá học 12 CD
5 phút giải sinh học 12 CD
5 phút giải KTPL 12 CD
5 phút giải lịch sử 12 CD
5 phút giải địa lí 12 CD
5 phút giải CN lâm nghiệp 12 CD
5 phút giải CN điện - điện tử 12 CD
5 phút giải THUD 12 CD
5 phút giải KHMT 12 CD
5 phút giải HĐTN 12 CD
5 phút giải ANQP 12 CD
Giải chuyên đề học tập lớp 12 kết nối tri thức
Giải chuyên đề Ngữ văn 12 Kết nối tri thức
Giải chuyên đề Toán 12 Kết nối tri thức
Giải chuyên đề Vật lí 12 Kết nối tri thức
Giải chuyên đề Hóa học 12 Kết nối tri thức
Giải chuyên đề Sinh học 12 Kết nối tri thức
Giải chuyên đề Kinh tế pháp luật 12 Kết nối tri thức
Giải chuyên đề Lịch sử 12 Kết nối tri thức
Giải chuyên đề Địa lí 12 Kết nối tri thức
Giải chuyên đề Tin học ứng dụng 12 Kết nối tri thức
Giải chuyên đề Khoa học máy tính 12 Kết nối tri thức
Giải chuyên đề Công nghệ 12 Điện - điện tử Kết nối tri thức
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Kết nối tri thức
Giải chuyên đề học tập lớp 12 chân trời sáng tạo
Giải chuyên đề Ngữ văn 12 Chân trời sáng tạo
Giải chuyên đề Toán 12 Chân trời sáng tạo
Giải chuyên đề Vật lí 12 Chân trời sáng tạo
Giải chuyên đề Hóa học 12 Chân trời sáng tạo
Giải chuyên đề Sinh học 12 Chân trời sáng tạo
Giải chuyên đề Kinh tế pháp luật 12 Chân trời sáng tạo
Giải chuyên đề Lịch sử 12 Chân trời sáng tạo
Giải chuyên đề Địa lí 12 Chân trời sáng tạo
Giải chuyên đề Tin học ứng dụng 12 Chân trời sáng tạo
Giải chuyên đề Khoa học máy tính 12 Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Điện - điện tử Chân trời sáng tạo
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Chân trời sáng tạo
Giải chuyên đề học tập lớp 12 cánh diều
Giải chuyên đề Ngữ văn 12 Cánh diều
Giải chuyên đề Toán 12 Cánh diều
Giải chuyên đề Vật lí 12 Cánh diều
Giải chuyên đề Hóa học 12 Cánh diều
Giải chuyên đề Sinh học 12 Cánh diều
Giải chuyên đề Kinh tế pháp luật 12 Cánh diều
Giải chuyên đề Lịch sử 12 Cánh diều
Giải chuyên đề Địa lí 12 Cánh diều
Giải chuyên đề Tin học ứng dụng 12 Cánh diều
Giải chuyên đề Khoa học máy tính 12 Cánh diều
Giải chuyên đề Công nghệ 12 Điện - điện tử Cánh diều
Giải chuyên đề Công nghệ 12 Lâm nghiệp thủy sản Cánh diều
Bình luận