Lý thuyết trọng tâm toán 6 cánh diều bài 3: Phép cộng, phép trừ phân số
Tổng hợp kiến thức trọng tâm toán 6 cánh diều bài 3: Phép cộng, phép trừ phân số. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
1. PHÉP CỘNG PHÂN SỐ
1.1. Quy tắc cộng hai phân số
- Quy tắc cộng hai phân số cùng mẫu: Muốn cộng hai phân số có cùng mẫu số ta cộng các tử và giữ nguyên mẫu:
$\frac{a}{m}+\frac{b}{m}=\frac{a+b}{m}$
VD: $\frac{-1}{5}+\frac{3}{5}=\frac{-1+3}{5}=\frac{2}{5}$
- Cộng hai phân số khác mẫu
Tính: $\frac{11}{-9}+\frac{5}{-6}$
Bước 1: Quy đồng mẫu hai phân số
$\frac{11}{-9}=\frac{-11}{9}$ và $\frac{5}{-6}=\frac{-5}{6}$; BCNN(9, 6) = 18
$\frac{11}{-9}=\frac{-11.2}{9.2}=\frac{-22}{18}$ và $\frac{5}{-6}=\frac{-5.3}{6.3}=\frac{-15}{18}$
Bước 2: Cộng các tử và giữ nguyên mâu chung:
Ta có: $\frac{-22}{18}+\frac{-15}{18}=\frac{-22+(-15)}{18}=\frac{-37}{18}$
Vậy $\frac{11}{-9}+\frac{5}{-6}=\frac{-37}{18}$
Quy tắc:
Muốn cộng hai phân số không cùng mẫu, ta quy đồng mẫu những phân số đó rồi cộng các tử và giữ nguyên mẫu chung.
Luyện tập 1
a) $\frac{-3}{7}+\frac{2}{7}=\frac{-3+2}{7}=\frac{-1}{7}$
b) $\frac{-4}{9}+\frac{2}{-3}=\frac{-4}{9}+\frac{-2}{3}=\frac{-4.1}{9.1}+\frac{-2.3}{3.3}=\frac{-4}{9}+\frac{-6}{9}=\frac{-4+(-6)}{9}=\frac{-10}{9}$
1.2. Tính chất của phép cộng phân số
- Giống như phép cộng số tự nhiên, phép cộng phân số cũng có các tính chất: giao hoán, kết hợp, cộng với số 0.
a) Tính chất giao hoán: $\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}$
b) Tính chất kết hợp: $(\frac{a}{b}+\frac{c}{d})+\frac{p}{q}=\frac{a}{b}+(\frac{c}{d}+\frac{p}{q})$
c) Cộng với số 0: $\frac{a}{b}+0=0+\frac{a}{b}=\frac{a}{b}$
Luyện tập 2
a)$\frac{-5}{9}+\frac{4}{11}+\frac{7}{11}=\frac{-5}{9}+(\frac{4}{11}+\frac{7}{11})$
$=\frac{-5}{9}+\frac{11}{11}=\frac{-5}{9}+1=\frac{-5+1.9}{9}=\frac{4}{9}$
b) $\frac{-2}{5}+\frac{3}{8}+\frac{-3}{5}+\frac{13}{8}$
$=(\frac{-2}{5}+\frac{-3}{5})+(\frac{3}{8}+\frac{13}{8})=\frac{-5}{5}+\frac{16}{8}$
= -1 + 3 = 2
2. PHÉP TRỪ PHÂN SỐ
2.1. Số đối của một phân số
Giống như số nguyên, mỗi phân số đều có số đối sao cho tổng của hai số đó bằng 0
VD: Phân số $-\frac{3}{5}$ là số đối của phân số $\frac{3}{5}$
Kết luận
Số đối của phân số $\frac{a}{b}$ kí hiệu là $-\frac{a}{b}$
Ta có:
$\frac{a}{b}+(-\frac{a}{b})=0$
Chú ý:
Ta có: $-\frac{a}{b}=\frac{a}{-b}=\frac{-a}{b}$ với a, b ∉ Z, b ≠ 0
Số đối của $-\frac{a}{b}$ là $\frac{a}{b}$ tức là: $-(-\frac{a}{b})=\frac{a}{b}$
2.2. Quy tắc trừ hai phân số
- Quy tắc trừ hai phân số cùng mẫu: Muốn trừ hai phân số có cùng mẫu, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu:
$\frac{a}{m}-\frac{b}{m}=\frac{a-b}{m}$
VD: $\frac{-1}{5}-\frac{3}{5}=\frac{-1-3}{5}=\frac{-4}{5}$
- Trừ hai phân số khác mẫu
Tính: $\frac{13}{-9}-\frac{7}{-6}$
Bước 1: Quy đồng mẫu hai phân số
$\frac{13}{-9}=\frac{-13}{9}$ và $\frac{7}{-6}=\frac{-7}{6}$; BCNN(9, 6) = 18
$\frac{13}{-9}=\frac{-13.2}{9.2}$ và $\frac{7}{-6}=\frac{-7.3}{6.3}=\frac{-21}{18}$
Bước 2: Trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu chung:
Ta có: $\frac{-26}{18}-\frac{-21}{18}=\frac{-26-(-21)}{18}=\frac{-5}{18}$
Vậy $\frac{13}{-9}-\frac{7}{-6}=\frac{-5}{18}$
Nhận xét:
Muốn trừ hai phân số không cùng mẫu, ta quy đồng những phân số đó rồi trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu chung.
Luyện tập 3
$\frac{-7}{10}-\frac{9}{10}=\frac{-7-9}{10}=\frac{-16}{10}$
2.3. Quan hệ giữa phép trừ phân số và phép cộng với số đối
Hoạt động 4:
a) Phân số $\frac{2}{5}$ là số đối của phân số $\frac{2}{-5}$
b)$\frac{-3}{7}-\frac{2}{-5}=\frac{-3.5}{7.5}-\frac{-2.7}{5.7}=\frac{-15}{35}-\frac{-14}{35}=\frac{-1}{35}$
$\frac{-3}{7}+\frac{2}{5}=\frac{-3.5}{7.5}+\frac{2.7}{5.7}=\frac{-15}{35}+\frac{14}{35}=\frac{-1}{5}$
Vậy $\frac{-3}{7}-\frac{2}{-5}=\frac{-3}{7}+\frac{2}{5}$
Kết luận:
Muốn trừ hai phân số, ta cộng số bị trừ với số đối của số trừ:
$\frac{a}{b}-\frac{c}{d}=\frac{a}{b}+(-\frac{c}{d})$
Luyện tập 4
$\frac{7}{12}-\frac{-9}{20}=\frac{7}{12}+\frac{9}{20}=\frac{7.5}{12.5}+\frac{9.3}{20.3}$
$=\frac{35}{60}+\frac{27}{60}=\frac{62}{60}=\frac{31}{30}$
3. QUY TẮC DẤU NGOẶC
Quy tắc dấu ngoặc đối với phân số giống như quy tắc dấu ngoặc đối với số nguyên.
Luyện tập 5
$\frac{-2}{49}-(\frac{47}{49}+\frac{5}{-3})=\frac{-2}{49}-\frac{47}{49}-\frac{5}{-3}$
$=\frac{-2-47}{49}+\frac{5}{3}=\frac{-49}{49}+\frac{5}{3}=-1+\frac{5}{3}=\frac{-1.3+5}{3}=\frac{2}{3}$
Nếu chưa hiểu - hãy xem: => Lời giải chi tiết ở đây
Nội dung quan tâm khác
Thêm kiến thức môn học
Giải bài tập những môn khác
Giải sgk 6 KNTT
Giải SBT lớp 6 kết nối tri thức
Giải SBT ngữ văn 6 kết nối tri thức
Giải SBT Toán 6 kết nối tri thức
Giải SBT Khoa học tự nhiên 6 kết nối tri thức
Giải SBT Lịch sử và địa lí 6 kết nối tri thức
Giải SBT tin học 6 kết nối tri thức
Giải SBT công dân 6 kết nối tri thức
Giải SBT công nghệ 6 kết nối tri thức
Giải SBT tiếng Anh 6 kết nối tri thức
Giải SBT hoạt động trải nghiệm 6 kết nối tri thức
Giải SBT âm nhạc 6 kết nối tri thức
Giải SBT mĩ thuật 6 kết nối tri thức
Bình luận